Department of Commerce & Business Management
University Arts & Science College

Programming with C & C++

[Type the document subtitle]

K. Phanindra Kumar
Asst. Professor
Dept. of Commerce & Busi. Management
University Arts & Science College
(Autonomous)

Kakatiya University, Warangal.

Department of Commerce & Business Management, Kakatiya University, Warangal.
Paper DSC 203: PROGRAMMING WITH C & C++

Hours Per Week: 5 Credits: 5
Exam Hours: 1 % Marks: 50U+35P+15I

Objective: Fundamental Concepts of Programming in C and Object Oriented Programming in
C++.

UNIT-I: Introduction: Computer of Languages- Flow charts-algorithms-History of C
language - Basic Structure-Programming Rules -Commonly used library functions -
Executing the C Program - Pre-processors in “C"- Keywords & ldentifiers - Constants -
Variables: Rules for defining variables - Scope and Life of a Variable--Data types - Type
Conversion - Formatted Input and Output operations. Operators: Introduction -
Arithmetic - Relational - Logical - Assignment - Conditional - Special - Bitwise -Increment /
Decrement operator.

UNIT-II: Conditional statements: Introduction - If statements - If-else statements - nested
if-else - break statement-continue and exit-statement - goto-statement-Switch statements.
Looping statements: Introduction-While statements - Do-while statements - For
Statements-nested loop statements.

UNIT-III: Functions: Definition and declaration of functions- Function proto type-return
statement- types of functions and Built-in functions. User-defined functions:
Introduction-Need for user defined Function and Components of functions. Arrays:
Introduction-Defining an array-Initializing an array-One dimensional array- Multi
dimensional array. Strings: Introduction-Declaring and initializing string- and Handling
Strings -String handling functions. Pointers: Features of pointers- Declaration of Pointers-

advantages of pointers.

UNIT-IV: Structures: Features of Structures - Declaring and initialization of Structures -
Structure within Structure-Array of Structures- Enumerated data type. Unions - Definition
and advantages of Unions comparison between Structure & Unions.

Object Oriented Programming: Introduction to Object Oriented Programming - Structure
of C++ -Simple program of C++-Differences between C & C++

UNIT-V: Classes and Objects: Data Members-Member Functions - Object Oriented- Class-
Object- Encapsulation-Abstraction concepts-Polymorphism (Function overloading and
Operator Overloading) Inheritance- (Inheritance Forms and Inheritance Types).

Programming with C & C++ Unit -1

UNIT-I: INTRODUCTION TO C LANGUAGE, VARIABLES, DATA TYPES AND OPERATORS
Introduction: Types of Languages- History of C language — Basic Structure —Programming Rules
- Flow charts-algorithms-Commonly used library functions - Executing the C Program - Pre-
processors in “C”- Keywords & Identifiers - Constants — Variables: Rules for defining variables -
Scope and Life of a Variable-- Data types - Type Conversion - Formatted Input and Output
operations. Operators: Introduction - Arithmetic - Relational - Logical - Assignment -
Conditional - Special - Bitwise - Increment / Decrement operator.

INTRODUCTION:

A Computer is an electronic device that stores, manipulates and retrieves the data.

A Computer System is a group of several objects with a process. The following are the
objects of computer System:

a) User (A person who uses the computer)

b) Hardware

c) Software

Hardware: Hardware of a computer system can be referred as anything which we can touch
and feel. Example: Keyboard and Mouse. The hardware of a computer system can be classified
as Input Devices (I/P) Processing Devices (CPU) Output Devices (0/P)

Software: Software of a computer system can be referred as anything which we can feel and
see. Example: Windows, icons Computer software is divided in to two broad categories: system
software and application software .System software manages the computer resources .It
provides the interface between the hardware and the users. Application software, on the other
hand is directly responsible for helping users solve their problems.

System Software: System software consists of programs that manage the hardware resources
of a computer and perform required information processing tasks. These programs are divided
into three classes: the operating system, system support, and system development.

The operating system provides services such as a user interface, file and database
access, and interfaces to communication systems such as Internet protocols. The primary
purpose of this software is to keep the system operating in an efficient manner while allowing
the users access to the system.

System support software provides system utilities and other operating services.
Examples of system utilities are sort programs and disk format programs. Operating services
consists of programs that provide performance statistics for the operational staff and security
monitors to protect the system and data.

The last system software category, system development software, includes the language
translators that convert programs into machine language for execution ,debugging tools to
ensure that the programs are error free and computer -assisted software engineering(CASE)
systems.

Mr. Phanindra KumarKatakam, Asst. Professor, Univ. Arts & Science College, KU, Wgl.

Programming with C & C++ Unit -1

Application software: Application software is broken in to two classes: general-purpose
software and application - specific software. General purpose software is purchased from a
software developer and can be used for more than one application. Examples of general
purpose software include word processors, database management systems ,and computer
aided design systems. They are labeled general purpose because they can solve a variety of
user computing problems.

Application -specific software can be used only for its intended purpose.

A general ledger system used by accountants and a material requirements planning
system used by a manufacturing organization are examples of application-specific software.
They can be used only for the task for which they were designed they cannot be used for other
generalized tasks. The relationship between system and application software is shown below.
In this figure, each circle represents an interface point .The inner core is hard ware. The user is
represented by the out layer. To work with the system, the typical user uses some form of
application software. The application software in turn interacts with the operating system,
which is a part of the system software layer. The system software provides the direct
interaction with the hard ware. The opening at the bottom of the figure is the path followed by
the user who interacts directly with the operating system when necessary.

COMPUTER LANGUAGES
To write a program (tells what to do) for a computer, we must use a computer language.
Over the years computer languages have evolved from machine languages to natural
languages.
The following is the summary of computer languages
1940°‘s -- Machine Languages
1950°‘s -- Symbolic Languages
1960°s -- High Level Languages

Machine Language:

In the earliest days of computers, the only programming languages available were
machine languages. Each computer has its own machine language which is made of streams of
0‘s and 1‘s. The instructions in machine language must be in streams of 0‘s and 1‘s. This is also
referred as binary digits. These are so named as the machine can directly understood the
programs.

Advantages: Disadvantages:

High speed execution Machine dependent

The computer can understood instructions Programming is very difficult
immediately Difficult to understand

No translation is needed. Difficult to write bug free programs

Difficult to isolate an error

Mr. Phanindra KumarKatakam, Asst. Professor, Univ. Arts & Science College, KU, Wgl.

Programming with C & C++ Unit -1

Assembly Language:

In the early 1950‘s Admiral Grace Hopper, a mathematician and naval officer, developed
the concept of a special computer program that would convert programs into machine
language. These early programming languages simply mirrored the machine languages using
symbols or mnemonics to represent the various language instructions. These languages were
known as symbolic languages. Because a computer does not understand symbolic language it
must be translated into the machine language. A special program called an Assembler
translates symbolic code into the machine language. Hence they are called as Assembly
language.

Advantages: Disadvantages:
Easy to understand and use Machine Dependent Language
Easy to modify and isolate error Requires translator
High efficiency Difficult to learn and write programs
More control on hardware Slow development time
Less efficient

High-Level Languages

The symbolic languages greatly improved programming efficiency they still required
programmers to concentrate on the hardware that they were using working with symbolic
languages was also very tedious because each machine instruction had to be individually
coded. The desire to improve programmer efficiency and to change the focus from the
computer to the problems being solved led to the development of high-level languages.

High-level languages are portable to many different computer allowing the programmer
to concentrate on the application problem at hand rather than the intricacies of the computer.

C > A systems implementation Language

C++ = C with object oriented enhancements

JAVA > Object oriented language for internet and general applications using basic

C syntax

Advantages:

Easy to write and understand
Easy to isolate an error
Machine independent language
Easy to maintain

Better readability

Low Development cost

Easier to document

Portable

Disadvantages:

Needs translator

Requires high execution time
Poor control on hardware
Less efficient

Mr. Phanindra KumarKatakam, Asst. Professor, Univ. Arts & Science College, KU, Wgl.

Programming with C & C++ Unit -1

Difference between Machine, Assembly, High Level Languages

Feature Machine Assembly High Level

Form 0’sand 1’s Mnemonic codes Normal English
Machine Dependent Dependent Dependent Independent
Translator Not Needed Needed(Assembler) Needed(Compiler)
Execution Time Less Less High

Languages Only one Different Manufactgurers Different Languages
Nature Difficult Difficult Easy

Memory Space Less Less More

Language Translators

These are the programs which are used for converting the programs in one language
into machine language instructions, so that they can be excuted by the computer.
1) Compiler: It is a program which is used to convert the high level language programs into
machine language.
2) Assembler: It is a program which is used to convert the assembly level language programs
into machine language.
3) Interpreter: It is a program, it takes one statement of a high level language program,
translates it into machine language instruction and then immediately executes the resulting
machine language instruction and so on.

Introduction to C Language

C is a general-purpose high level language that was originally developed by Dennis
Ritchie for the UNIX operating system. It was first implemented on the Digital Equipment
Corporation PDP-11 computer in 1972.

The UNIX operating system and virtually all Unix applications are written in the C
language. C has now become a widely used professional language for various reasons.

v Easy to learn

Structured language
It produces efficient programs.
It can handle low-level activities.
[t can be compiled on a variety of computers.

ARV

Facts about C
= (Cwas invented to write an operating system called UNIX
= (Cis asuccessor of B language which was introduced around 1970
= The language was formalized in 1988 by the (ANSI)
= By 1973 UNIX OS almost totally written in C
= Today Cis the most widely used System Programming Language
= Most of the state of the art software has been implemented using C

Programming with C & C++ Unit -1

Why to use C?

C was initially used for system development work, in particular the programs that
make-up the operating system. C was adopted as a system development language because it
produces code that runs nearly as fast as code written in assembly language.

Some examples of the use of C might be:
e Operating Systems
e Language Compilers
e Assemblers
e Text Editors
e Print Spoolers
e Network Drivers
e Modern Programs
e Data Bases
e Language Interpreters
e Utilities

C Program File
All the C programs are writen into text files with extension ".c" for example hello.c. You
can use "vi" editor to write your C program into a file.

HISTORY TO C LANGUAGE

C is a general-purpose language which has been closely associated with the UNIX
operating system for which it was developed - since the system and most of the programs that
run it are written in C. Many of the important ideas of C stem from the language BCPL,
developed by Martin Richards. The influence of BCPL on C proceeded indirectly through the
language B, which was written by Ken Thompson in 1970 at Bell Labs, for the first UNIX
system on a DEC PDP7. BCPL and B are "type less" languages whereas C provides a variety of
data types.

In 1972 Dennis Ritchie at Bell Labs writes C and in 1978 the publication of The C
Programming Language by Kernighan & Ritchie caused a revolution in the computing world. In
1983, the American National Standards Institute (ANSI) established a committee to provide a
modern, comprehensive definition of C. The resulting definition, the ANSI standard, or "ANSI
C", was completed late 1988.

Mr. Phanindra KumarKatakam, Asst. Professor, Univ. Arts & Science College, KU, Wgl.

Programming with C & C++ Unit -1
BASIC STRUCTURE OF C PROGRAMMING

Documentation section

Link section

Definition section

(lobal declaration section

main () Function section

{

Declaration part
| part_|

l Executable part ‘

}

Subprogram section

Function 1

Function 2

(User defined functions)

Function n

1. Documentation section: The documentation section consists of a set of comment lines
giving the name of the program, the author and other details, which the programmer would
like to use later.

Example

/**

* File Name: Helloworld.c

* Author: Manthan Naik

* date: 09/08/2019

* description: a program to display hello world
* no input needed

*/

2. Link section: The link section provides instructions to the compiler to link functions from
the system library such as using the #include directive.
Example
#include<stdio.h>

3. Definition section: The definition section defines all symbolic constants such using the
#define directive. In this section, we define different constants. The keyword define is
used in this part.

#define PI=3.14

4. Global declaration section: There are some variables that are used in more than one

function. Such variables are called global variables and are declared in the global

Programming with C & C++ Unit -1

declaration section that is outside of all the functions. This section also declares all the
user-defined functions.
The user-defined functions are also declared in this part of the code.

float area(float r);

int a=7;

5. main () function section: Every C program must have one main function section. This

section contains two parts; declaration part and executable part
1. Declaration part: The declaration part declares all the variables used in the
executable part.
2. Executable part: There is at least one statement in the executable part. These two
parts must appear between the opening and closing braces. The program execution
begins at the opening brace and ends at the closing brace. The closing brace of the main
function is the logical end of the program. All statements in the declaration and
executable part end with a semicolon.

Both the declaration and execution part are inside the curly braces.
int main(void)
{
int a=10;
printf(" %d", a);
return 0;
}

6. Subprogram section: If the program is a multi-function program then the subprogram
section contains all the user-defined functions that are called in the main () function.
User-defined functions are generally placed immediately after the main () function,
although they may appear in any order.

Sub Program Section

All the user-defined functions are defined in this section of the program.
int add(int a, int b)
{

return a+b;

}

Mr. Phanindra KumarKatakam, Asst. Professor, Univ. Arts & Science College, KU, Wgl.

Programming with C & C++ Unit -1

CREATING AND RUNNING PROGRAMS

The procedure for turning a program written in C into machine Language. The process
is presented in a straightforward, linear fashion but you should recognize that these steps are
repeated many times during development to correct errors and make improvements to the
code. The following are the four steps in this process

1) Writing and Editing the program

2) Compiling the program

3) Linking the program with the required modules

4) Executing the program

TEXT EDITOR

|

COMPILER

'

RUNNER

!

ouTPUT
8l. No. Phase Name of Code Tools File Extension
1 TextEditor Source Code C Compilers]
Edit,
Motepad Ete. .,
2 Compler Objgect Code C Compiler AOBI
i Linker Executable C Compiler EXE
Code
4 Runner Executable C Compiler EXE
Code

Writing and Editing Programes:

The software used to write programs is known as a text editor. A text editor helps us
enter, change and store character data. Once we write the program in the text editor we save it
using a filename stored with an extension of .C. This file is referred as source code file.

Programming with C & C++ Unit -1
Compiling Programs

The code in a source file stored on the disk must be translated into machine language.
This is the job of the compiler. The Compiler is a computer program that translates the source
code written in a high-level language into the corresponding object code of the low-level
language. This translation process is called compilation. The entire high level program is
converted into the executable machine code file. The Compiler which executes C programs is
called as C Compiler.
Example Turbo C, Borland C, GC etc.,

The C Compiler is actually two separate programs:
The Preprocessor
The Translator

The Preprocessor reads the source code and prepares it for the translator. While
preparing the code, it scans for special instructions known as preprocessor commands. These
commands tell the preprocessor to look for special code libraries. The result of preprocessing
is called the translation unit.

After the preprocessor has prepared the code for compilation, the translator does the
actual work of converting the program into machine language. The translator reads the
translation unit and writes the resulting object module to a file that can then be combined with
other precompiled units to form the final program. An object module is the code in the
machine language.

Linking Programs
The Linker assembles all functions, the program’s functions and system'‘s functions into
one executable program.

Executing Programs

To execute a program we use an operating system command, such as run, to load the
program into primary memory and execute it. Getting the program into memory is the function
of an operating system program known as the loader. It locates the executable program and
reads it into memory. When everything is loaded the program takes control and it begins
execution.

FLOWCHARTS:

Flowchart is a diagrammatic representation of an algorithm. Flowchart is very helpful in
writing program and explaining program to others.

Symbols Used In Flowchart

Different symbols are used for different states in flowchart, For example: Input/Output and
decision making has different symbols. The table below describes all the symbols that are used
in making flowchart

Mr. Phanindra KumarKatakam, Asst. Professor, Univ. Arts & Science College, KU, Wgl.

Programming with C & C++ Unit - 1
Symbol Purpose Description

) Used to indicate the flow of logic by connecting
— » Flow line

symbols.
(| Terminal{Stop/Start) Used to represent start and end of flowchart.
| Input/Output Used for input and output operation.
. Used for airthmetic operations and data-
Processing . .
manipulations.
- Used to represent the operation in which there are
- ., Desicion
S two alternatives, true and false.
| | On-page Connector Used to join different flowline
{
} Off-page Connector Used to connect flowchart portion on different page.
—|~ Predefined Uised to represent a group of stalements performing
Process/Function one processing task.

Examples of flowcharts in programming

Draw a flowchart to add two numbers entered by user.

| Start |
Declare variables numi, num2 and sum |
t

Read numl and |
/ num2 |

f

L]
sum+—a+h |

‘

Display sum

|
—

| Stop |

Programming with C & C++ Unit -1

ALGORITHM

Algorithm is a finite sequence of instructions, each of which has a clear meaning and can
be performed with a finite amount of effort in a finite length of time. No matter what the input
values may be, an algorithm terminates after executing a finite number of instructions.

We represent an algorithm using a pseudo language that is a combination of the
constructs of a programming language together with informal English statements

The ordered set of instructions required to solve a problem is known as an algorithm.
The characteristics of a good algorithm are:

Precision - the steps are precisely stated (defined).

Uniqueness - results of each step are uniquely defined and only depend on the input
and the result of the preceding steps.

Finiteness - the algorithm stops after a finite number of instructions are executed.

Input - the algorithm receives input.

Output - the algorithm produces output.

Generality - the algorithm applies to a set of inputs.

Example
Q. Write a algorithm to find out number is odd or even?
Ans. Step 1:start
step 2 : input number
Step 3 : rem=number mod 2
Step 4 : if rem=0 then
print "number even"
else
print "number odd"
endif
Step 5 : stop

COMMONLY USED LIBRARY FUNCTIONS:

C Standard library functions or simply C Library functions are inbuilt functions in C
programming.
The prototype and data definitions of these functions are present in their respective header
files. To use these functions we need to include the header file in our program. For example,
If you want to use the printf() function, the header file <stdio.h> should be included.

1. #include <stdio.h>

2. int main()

3. {

4. printf("Catch me if you can.");
5 }

If you try to use printf() without including the stdio.h header file, you will get an error.

LIST OF MOST USED HEADER FILES IN C PROGRAMMING LANGUAGE:
e Check the below table to know all the C library functions and header files in which they
are declared.

Mr. Phanindra KumarKatakam, Asst. Professor, Univ. Arts & Science College, KU, Wgl.

Programming with C & C++ Unit -1

e Click on the each header file name below to know the list of inbuilt functions declared
inside them.

Header file Description

stdio.h This is standard input/output header file in which Input/Output
functions are declared

conio.h This is console input/output header file

string.h All string related functions are defined in this header file

stdlib.h This header file contains general functions used in C programs

math.h All maths related functions are defined in this header file

time.h This header file contains timne and clock related functions

ctype.h All character handling functions are defined in this header file

stdarg.h Variable argument functions are declared in this header file

signal.h Signal handling functions are declared in this file

setjimp.h This file contains all jump functions

locale.h This file contains locale functions

errno.h Error handling functions are given in this file

assert.h This contains diagnostics functions

Advantages of Using C library functions

1. They work: One of the most important reasons you should use library functions is simply
because they work. These functions have gone through multiple rigorous testing and are easy
to use.

2. The functions are optimized for performance: Since, the functions are "standard library"
functions, a dedicated group of developers constantly make them better. In the process, they
are able to create the most efficient code optimized for maximum performance.

3. It saves considerable development time: Since the general functions like printing to a
screen, calculating the square root, and many more are already written. You shouldn't worry
about creating them once again.

4. The functions are portable: With ever-changing real-world needs, your application is
expected to work every time, everywhere. And, these library functions help you in that they do
the same thing on every computer.

Programming with C & C++ Unit -1

PRE-PROCESSORS IN “C”:
KEYWORDS AND IDENTIFIERS

Character set
A character set is a set of alphabets, letters and some special characters that are valid in C
language.

Alphabets
Uppercase: A B C .o XYZ
Lowercase: ab C .veneennereeeneensennneens XyZ

C accepts both lowercase and uppercase alphabets as variables and functions.
Digits

0123456789

Special Characters

% [1 # ?
' & { } "
A 1 * /

- \ ~ +

Special Characters in C Programming

White space Characters
Blank space, newline, horizontal tab, carriage, return and form feed.

Mr. Phanindra KumarKatakam, Asst. Professor, Univ. Arts & Science College, KU, Wgl.

Programming with C & C++ Unit -1

CKEYWORDS

Keywords are predefined, reserved words used in programming that have special
meanings to the compiler. Keywords are part of the syntax and they cannot be used as an
identifier. For example:
1. int money;
Here, int is a keyword that indicates money is a variable of type int (integer).
As C is a case sensitive language, all keywords must be written in lowercase. Here is a list of all
keywords allowed in ANSI C.

auto double int struct
break else long switch
case enum register typedef
char extern return union
continue for signed void
do if static while
default goto sizeof volatile
const float short unsigned
C Keywords

All these keywords, their syntax, and application will be discussed in their respective
topics. However, if you want a brief overview of these keywords without going further,

visit List of all keywords in C programming.

C Identifiers

Identifier refers to name given to entities such as variables, functions, structures etc.
Identifiers must be unique. They are created to give a unique name to an entity to identify it
during the execution of the program. For example:
1. int money;
2. double accountBalance;
Here, money and accountBalance are identifiers.

Also remember, identifier names must be different from keywords. You cannot
use int as an identifier because int is a keyword.

Rules for naming identifiers
1. Avalid identifier can have letters (both uppercase and lowercase letters), digits and
underscores.
2. The first letter of an identifier should be either a letter or an underscore.

Mr. Phanindra KumarKatakam, Asst. Professor, Univ. Arts & Science College, KU, Wgl.

Programming with C & C++ Unit -1

3. You cannot use keywords as identifiers.
4. There is no rule on how long an identifier can be. However, you may run into problems
in some compilers if the identifier is longer than 31 characters.

You can choose any name as an identifier if you follow the above rule, however, give
meaningful names to identifiers that make sense.

Variables, Constants and Literals

Variables

In programming, a variable is a container (storage area) to hold data.

To indicate the storage area, each variable should be given a unique name (identifier). Variable
names are just the symbolic representation of a memory location. For example:

1. int playerScore = 95;

Here, playerScore is a variable of int type. Here, the variable is assigned an integer value 95.
The value of a variable can be changed, hence the name variable.

1. charch="a";
2. // some code
3. ch=";

Rules for naming a variable
1. Avariable name can have only letters (both uppercase and lowercase letters), digits and
underscore.
2. The firstletter of a variable should be either a letter or an underscore.
3. There is no rule on how long a variable name (identifier) can be. However, you may run
into problems in some compilers if the variable name is longer than 31 characters.
Note: You should always try to give meaningful names to variables. For example: firstNameis a
better variable name than fn.

C is a strongly typed language. This means that the variable type cannot be changed once it
is declared. For example:
l.int number =5; //integer variable
2.number = 5.5; // error
3.double number; // error

Here, the type of number variable is int. You cannot assign a floating-point (decimal)
value 5.5 to this variable. Also, you cannot redefine the data type of the variable to double. By
the way, to store the decimal values in C, you need to declare its type to either double or float.

Constants
If you want to define a variable whose value cannot be changed, you can use
the constkeyword. This will create a constant. For example,
1. const double PI = 3.14;
Notice, we have added keyword const.
Here, Pl is a symbolic constant; its value cannot be changed.

Mr. Phanindra KumarKatakam, Asst. Professor, Univ. Arts & Science College, KU, Wgl.

Programming with C & C++ Unit -1

1. constdouble PI =3.14;
2. PI=29; //Error

Literals

Literals are data used for representing fixed values. They can be used directly in the
code. For example: 1, 2.5, 'c’ etc.
Here, 1, 2.5 and 'c’ are literals. Why? You cannot assign different values to these terms.

1. Integers
An integer is a numeric literal(associated with numbers) without any fractional or exponential
part. There are three types of integer literals in C programming:
e decimal (base 10)
o octal (base 8)
e hexadecimal (base 16)
For example:

Decimal: 0, -9, 22 etc
Octal: 021,077,033 etc
Hexadecimal: 0x7f, 0x2a, 0x521 etc

In C programming, octal starts with a 0, and hexadecimal starts with a 0x.

2. Floating-point Literals
A floating-point literal is a numeric literal that has either a fractional form or an exponent
form. For example:

-2.0
0.0000234

-0.22E-5

Note: E-5=10"°
3. Characters

A character literal is created by enclosing a single character inside single quotation
marks. For example: 'a’, 'm’, 'F', '2', '}' etc.
4. Escape Sequences
Sometimes, it is necessary to use characters that cannot be typed or has special meaning in C
programming. For example: newline(enter), tab, question mark etc.

In order to use these characters, escape sequences are used.

Escape Sequences Character

\b Backspace

Mr. Phanindra KumarKatakam, Asst. Professor, Univ. Arts & Science College, KU, Wgl.

Programming with C & C++ Unit -1

Escape Sequences Character

\f Form feed

\n Newline

\r Return

\t Horizontal tab

\v Vertical tab

\\ Backslash

N\ Single quotation mark
\" Double quotation mark
N Question mark

\O Null character

Escape Sequences

For example: \n is used for a newline. The backslash \ causes escape from the normal way the
characters are handled by the compiler.

5. String Literals

A string literal is a sequence of characters enclosed in double-quote marks. For example:
"good" //string constant
" //null string constant

//string constant of six white space

//string constant having a single character.
"Earth is round\n" //prints string with a newline

DATA TYPES

In C programming, data types are declarations for variables. This determines the type and size
of data associated with variables. For example,

1. int myVar;

Here, myVar is a variable of int (integer) type. The size of int is 4 bytes.

Basic types
Here's a table containing commonly used types in C programming for quick access.

Mr. Phanindra KumarKatakam, Asst. Professor, Univ. Arts & Science College, KU, Wgl.

Programming with C & C++

Unit-1

Type Size (bytes) Format Specifier
int at least 2, usually 4 %d
char 1 %c
float 4 %f
double 8 %lf
short int 2 usually %hd
unsigned int at least 2, usually 4 %u
long int at least 4, usually 8 %li
long long int at least 8 %lli
unsigned long int atleast 4 %lu
unsigned long long
int atleast 8 %llu
signed char 1 %c
unsigned char 1 %c
at least 10, usually 12 or
long double 16 %Lf

int
Integers are whole numbers that can have both zero, positive and negative values but
no decimal values. For example, 0, -5, 10
We can use int for declaring an integer variable.
1. intid;
Here, id is a variable of type integer.
You can declare multiple variables at once in C programming. For example,
1. intid, age;
The size of int is usually 4 bytes (32 bits). And, it can take 232 distinct states from -
2147483648 to 2147483647.

Mr. Phanindra KumarKatakam, Asst. Professor, Univ. Arts & Science College, KU, Wgl.

Programming with C & C++ Unit -1

float and double

float and double are used to hold real numbers.

1. floatsalary;

2. double price;

In C, floating-point numbers can also be represented in exponential. For example,

1. float normalizationFactor = 22.442e2;

What's the difference between float and double?

The size of float (single precision float data type) is 4 bytes. And the size of double (double
precision float data type) is 8 bytes.

char

Keyword char is used for declaring character type variables. For example,
1. chartest="h";

The size of the character variable is 1 byte.

void

void is an incomplete type. It means "nothing" or "no type". You can think of void as absent.
For example, if a function is not returning anything, its return type should be void.

Note that, you cannot create variables of void type.

short and long

If you need to use a large number, you can use a type specifier long. Here's how:

1. longa;

2. longlong b;

3. long double c;

Here variables a and b can store integer values. And, c can store a floating-point number.

If you are sure, only a small integer ([-32,767, +32,767] range) will be used, you can use short.

short d;

Mr. Phanindra KumarKatakam, Asst. Professor, Univ. Arts & Science College, KU, Wgl.

Programming with C & C++ Unit -1

You can always check the size of a variable using the sizeof() operator.
1. #include <stdio.h>

2. intmain() {

3. shorta;

4. longhb;

5. longlongc;

6. longdouble d;

7

8. printf("size of short = %d bytes\n", sizeof(a));

9. printf("size of long = %d bytes\n", sizeof(b));

10. printf("size of long long = %d bytes\n", sizeof(c));
11. printf("size of long double= %d bytes\n", sizeof(d));

12. return 0;
13.}

signed and unsigned
In C, signed and unsigned are type modifiers. You can alter the data storage of a data type
by using them. For example,
1. unsigned intx;
2. inty;
Here, the variable x can hold only zero and positive values because we have used
the unsigned modifier.
Considering the size of int is 4 bytes, variable y can hold values from -231 to 231-1, whereas
variable x can hold values from 0 to 232-1.

Other data types defined in C programming are:
e bool Type
e Enumerated type
o Complex types

Derived Data Types

Data types that are derived from fundamental data types are derived types. For example:
arrays, pointers, function types, structures, etc.

Mr. Phanindra KumarKatakam, Asst. Professor, Univ. Arts & Science College, KU, Wgl.

Programming with C & C++ Unit -1

Input Output (I/0)

C Input
In C programming, scanf() is one of the commonly used function to take input from the user.
The scanf() function reads formatted input from the standard input such as keyboards.

Example 5: Integer Input/OQutput

1. #include <stdio.h>

2. int main()

3. {

4, int testinteger;

5. printf("Enter an integer: ");

6 scanf("%d", &testInteger);

7 printf("Number = %d", testInteger);
8. return 0;

9. }
Output

Enter an integer: 4
Number = 4

Here, we have used %d format specifier inside the scanf() function to take int input from the
user. When the user enters an integer, it is stored in the testinteger variable.

Notice, that we have used &testInteger inside scanf(). It is because &testInteger gets the
address of testInteger, and the value entered by the user is stored in that address.

Example 6: Float and Double Input/Output
1. #include <stdio.h>
2. int main()

3. {

4 float num1;
5. double num2;
6

7

8

9

printf("Enter a number: ");
scanf("%f", &num1);
. printf("Enter another number: ");

10. scanf("%lf", &num?2);

11.

12. printf("num1 = %f\n", num1);

13. printf("num2 = %lf", num2);

14.

15. return 0;

16.}

Mr. Phanindra KumarKatakam, Asst. Professor, Univ. Arts & Science College, KU, Wgl.

Programming with C & C++ Unit -1

Output

Enter a number: 12.523

Enter another number: 10.2

num1 =12.523000

num2 =10.200000

We use %f and %lf format specifier for float and double respectively.

Example 7: C Character 1/0

1. #include <stdio.h>

2. int main()

3. {

4 char chr;

5. printf("Enter a character: ");

6 scanf("%c",&chr);

7 printf("You entered %c.", chr);
8. return 0;

9. }
Output

Enter a character: g
You entered g.

When a character is entered by the user in the above program, the character itself is not
stored. Instead, an integer value (ASCII value) is stored.
And when we display that value using %c text format, the entered character is displayed. If we
use %d to display the character, it's ASCII value is printed.

Example 8: ASCII Value

1. #include <stdio.h>

2. int main()

3. {

4 char chr;

5. printf("Enter a character: ");
6 scanf("%c", &chr);

7

8

9

// When %c is used, a character is displayed
. printf("You entered %c.\n",chr);

10.
11. // When %d is used, ASCII value is displayed
12. printf("ASCII value is % d.", chr);

13. return O;

14.}

Mr. Phanindra KumarKatakam, Asst. Professor, Univ. Arts & Science College, KU, Wgl.

Programming with C & C++ Unit -1

Output

Enter a character: g
You entered g.
ASCII value is 103.

I/0 Multiple Values

Here's how you can take multiple inputs from the user and display them.
1. #include <stdio.h>

2. int main()
3. {

4, int a;

5. floatb;

6

7 printf("Enter integer and then a float: ");
8

9

. // Taking multiple inputs
10. scanf("%d%f", &a, &b);

11.

12. printf("You entered %d and %f", a, b);
13. return O;

14.}

Output

Enter integer and then a float: -3

3.4

You entered -3 and 3.400000

Format Specifiers for 1/0

As you can see from the above examples, we use

%d for int

%f for float

%]f for double

%c for char

Here's a list of commonly used C data types and their format specifiers.

Data Type Format Specifier
int %d

char %c

float %f

double %lf

short int %hd

Mr. Phanindra KumarKatakam, Asst. Professor, Univ. Arts & Science College, KU, Wgl.

Programming with C & C++

Data Type

unsigned int

long int

long long int
unsigned long int
unsigned long long int
signed char

unsigned char

long double

C Output

Unit -1
Format Specifier

%u
%li
%lli
%lu
%llu
%c
%c

%Lf

In C programming, printf() is one of the main output function. The function sends formatted

output to the screen. For example,

Example 1: C OQutput

1. #include <stdio.h>

2. int main()

3. {

4. // Displays the string inside quotations
5 printf("C Programming");

6. return 0;

7.}

Output

C Programming

How does this program work?

All valid C programs must contain the main() function. The code execution begins from the

start of the main() function.

The printf() is a library function to send formatted output to the screen. The function prints

the string inside quotations.

To use printf() in our program, we need to include stdio.h header file using the #include

<stdio.h> statement.

The return 0; statement inside the main() function is the "Exit status" of the program. It's

optional.

Mr. Phanindra KumarKatakam, Asst. Professor, Univ. Arts & Science College, KU, Wgl.

Programming with C & C++ Unit -1

Example 2: Integer Output
. #include <stdio.h>

1

2. int main()

3. {

4, int testinteger = 5;

5 printf("Number = %d", testInteger);
6 return 0;

7.}

Output

Number =5

We use %d format specifier to print int types. Here, the %d inside the quotations will be
replaced by the value of testInteger.

Example 3: float and double Output
1. #include <stdio.h>

2. int main()

3. {

4. float numberl = 13.5;
5. double number2 = 12.4;
6

7

8

9

printf("number1 = %f\n", number1);
printf("number2 = %lf", number2);

. return 0;

10.}
Output

numberl =13.500000
number2 =12.400000

To print float, we use %f format specifier. Similarly, we use %]lf to print double values.

Example 4: Print Characters
1. #include <stdio.h>

2. int main()

3. {

4, char chr="'a’;

5 printf("character = %c.", chr);
6. return 0;

7. }
Output

character = a

To print char, we use %c format specifier.

Mr. Phanindra KumarKatakam, Asst. Professor, Univ. Arts & Science College, KU, Wgl.

Programming with C & C++ Unit -1

OPERATORS

An operator is a symbol that operates on a value or a variable. For example: + is an operator to
perform addition.

C has a wide range of operators to perform various operations.

C Arithmetic Operators

An arithmetic operator performs mathematical operations such as addition, subtraction,

multiplication, division etc on numerical values (constants and variables).

Operator Meaning of Operator

+ addition or unary plus

- subtraction or unary minus

* multiplication
/ division
% remainder after division (modulo division)

Example 1: Arithmetic Operators

1. // Working of arithmetic operators
2. #include <stdio.h>

3. int main()

4. {

5. inta=9b=4,c

6.

7. c =a+b;

8. printf("a+b = %d \n",c);

9. c=a-b;

10. printf("a-b = %d \n",c);

11. c=a*b;

12. printf("a*b = %d \n",c);

13. c=a/b;

14. printf("a/b = %d \n",c);

15. c=a%b;

16. printf("Remainder when a divided by b = %d \n",c);
17.

18. return O;

19.}

Mr. Phanindra KumarKatakam, Asst. Professor, Univ. Arts & Science College, KU, Wgl.

Programming with C & C++ Unit -1

Output

a+b=13

a-b=5

a*b =36

a/b=2

Remainder when a divided by b=1

The operators +, - and * computes addition, subtraction, and multiplication respectively as you
might have expected.

In normal calculation, 9/4 = 2.25. However, the output is 2 in the program.

It is because both the variables a and b are integers. Hence, the output is also an integer. The
compiler neglects the term after the decimal point and shows answer 2 instead of 2.25.

The modulo operator % computes the remainder. When a=9 is divided by b=4, the remainder
is 1. The % operator can only be used with integers.

Suppose a=5.0,b=2.0,c=5andd = 2. Then in C programming,

// Either one of the operands is a floating-point number

a/b=25
a/d=25
¢/b=2.5

// Both operands are integers
c/d=2

C Increment and Decrement Operators

C programming has two operators increment ++ and decrement -- to change the value of an
operand (constant or variable) by 1.

Increment ++ increases the value by 1 whereas decrement -- decreases the value by 1. These
two operators are unary operators, meaning they only operate on a single operand.
Example 2: Increment and Decrement Operators

1. // Working of increment and decrement operators
2. #include <stdio.h>

3. int main()

4. {

5. inta=10,b=100;

6. float c=10.5,d =100.5;

7.

8. printf("++a =%d \n", ++a);
9. printf("--b = %d \n", --b);
10. printf("++c = %f \n", ++c);
11. printf("--d = %f \n", --d);
12.

13. return O;

14.}

Mr. Phanindra KumarKatakam, Asst. Professor, Univ. Arts & Science College, KU, Wgl.

Programming with C & C++ Unit -1

Output

++a=11
--b =99
++c=11.500000
++d =99.500000

Here, the operators ++ and -- are used as prefixes. These two operators can also be used as
postfixes like a++ and a--. Visit this page to learn more about how increment and decrement
operators work when used as postfix.

C Assignment Operators
An assignment operator is used for assigning a value to a variable. The most common
assignment operator is =

Operator Example Same as
= a=b a=b

+= a+=b a=ath
-= a-=b a=a-b
= a=b a=a*b
/= a/=b a=a/b
%= a%=>b a=a%b

Example 3: Assignment Operators

1. // Working of assignment operators
2. #include <stdio.h>
3. int main()

4. {

5. inta=5,c;
6

7

8

9

c=a [/cis5
printf("c = %d\n", c);
. c+=a [/cis10
10. printf("c = %d\n", c);
11. c-=a; //cis5
12. printf("c = %d\n", c);
13. c*=a; //cis25
14. printf("c = %d\n", c);

Mr. Phanindra KumarKatakam, Asst. Professor, Univ. Arts & Science College, KU, Wgl.

Programming with C & C++ Unit -1
15. c/=a //cisbh

16. printf("c = %d\n", c);

17. c¢%=a; //c=0

18. printf("c = %d\n", c);

19.

20. return 0;
21.}

Output

c=5

c=10

c=5

c=25

c=5

c=0

C Relational Operators

A relational operator checks the relationship between two operands. If the relation is true, it
returns 1; if the relation is false, it returns value 0.

Relational operators are used in decision making and loops.

Operator Meaning of Operator Example

== Equal to 5==3is evaluated to 0
> Greater than 5> 3isevaluated to 1
< Less than 5 <3 isevaluated to 0
I= Not equal to 5!=3isevaluated to 1
>= Greater than or equal to 5 >= 3 is evaluated to 1
<= Less than or equal to 5 <=3 isevaluated to 0

Example 4: Relational Operators

1. // Working of relational operators
2. #include <stdio.h>

3. int main()

4. {

5 inta=5b=5,¢c=10;

6

Mr. Phanindra KumarKatakam, Asst. Professor, Univ. Arts & Science College, KU, Wgl.

Programming with C & C++

7. printf("%d == %d is %d \n", a, b, a ==Db);
8. printf("%d == %d is %d \n", a, ¢, a == ¢);
9. printf("%d > %d is %d \n", a, b, a > b);
10. printf("%d > %d is %d \n", a, ¢, a > c);
11. printf("%d < %d is %d \n", a, b, a < b);
12. printf("%d < %d is %d \n", a, ¢, a < ¢);

13. printf("%d != %d is %d \n", a, b, a !=b);
14. printf("%d != %d is %d \n", a, ¢, a !=c);
15. printf("%d >= %d is %d \n", a, b, a >=b);
16. printf("%d >= %d is %d \n", a, ¢, a >=c);
17. printf("%d <= %d is %d \n", a, b, a <= b);

18.
19.
20.
21.}
Output

printf("%d <= %d is %d \n", a, ¢, a <=c);

return 0;

5==5is1
5==10is0
5>5is0
5>10is0
5<5is0
5<10is1
51=5is0
51=10is1
5>=5is1
5>=10is0
5<=5is1
5<=10is1

C Logical Operators

Unit-1

An expression containing logical operator returns either 0 or 1 depending upon whether
expression results true or false. Logical operators are commonly used in decision making in C

programming.

Operator Meaning

Logical AND. True only if all

&& operands are true

Logical OR. True only if either
[one operand is true

Example

If c=5and d = 2 then, expression ((c==5) &&
(d>5)) equals to 0.

If c=5 and d = 2 then, expression ((c==5) ||
(d>5)) equals to 1.

Mr. Phanindra KumarKatakam, Asst. Professor, Univ. Arts & Science College, KU, Wgl.

Programming with C & C++ Unit -1

Operator Meaning Example

Logical NOT. True only if the
! operand is 0 If c = 5 then, expression !(c==5) equals to 0.

Example 5: Logical Operators
1. // Working of logical operators

3. #include <stdio.h>
4. int main()

{

inta=5,b=5,c=10, result;

result = (a==b) && (c > b);

printf("(a == b) && (c > b) is %d \n", result);
10. result=(a==b) && (c<b);

11. printf("(a ==b) && (c < b) is %d \n", result);
12. result=(a==Db) || (c<b);

13. printf("(a==b) || (c <b)is %d \n", result);
14. result=(a!=b) || (c<b);

15. printf("(a!=b) || (c < b)is %d \n", result);
16. result=!(a!=b);

17. printf("!(a == b) is %d \n", result);

18. result=!(a==Db);

19. printf("!(a ==b) is %d \n", result);

21. return 0;
22.}
Output

(a==b)&&(c>b)is 1
(a==b) && (c<b)is0
(a==b) || (c<b)is1
(@a!'=b) || (c<b)isO
I(a!l=b)is1
I(a==b)is0

Explanation of logical operator program

(a==Db) && (c > 5) evaluates to 1 because both operands (a ==b) and (c > b) is 1 (true).
(a==Db) && (c < b) evaluates to 0 because operand (c < b) is 0 (false).

(a==b) || (c < b) evaluates to 1 because (a=b) is 1 (true).

(a!=b) || (c < b) evaluates to 0 because both operand (a != b) and (c < b) are 0 (false).
!(a!=Db) evaluates to 1 because operand (a !=b) is 0 (false). Hence, !(a !=b) is 1 (true).
!(a ==b) evaluates to 0 because (a ==b) is 1 (true). Hence, !(a == b) is 0 (false).

Mr. Phanindra KumarKatakam, Asst. Professor, Univ. Arts & Science College, KU, Wgl.

Programming with C & C++ Unit -1

C Bitwise Operators

During computation, mathematical operations like: addition, subtraction, multiplication,
division, etc are converted to bit-level which makes processing faster and saves power.
Bitwise operators are used in C programming to perform bit-level operations.

Operators Meaning of operators Qperators Meaning of operators
& Bitwise AND ~ Bitwise complement
| Bitwise OR << Shift left
A Bitwise exclusive OR >> Shift right
Other Operators

Comma Operator
Comma operators are used to link related expressions together. For example:
1. inta,c=05,d;

The sizeof operator
The sizeof is a unary operator that returns the size of data (constants, variables, array,
structure, etc).

Example 6: size of Operator
1. #include <stdio.h>

2. int main()

3. {

4, int a;

5. floatb;

6 double c;

7 char d;

8 printf("Size of int=%]lu bytes\n",sizeof(a));

9. printf("Size of float=%lu bytes\n",sizeof(b));
10. printf("Size of double=%]lu bytes\n",sizeof(c));
11. printf("Size of char=%lu byte\n",sizeof(d));
12.

13. return O;

14.}

Output

Size of int = 4 bytes

Size of float = 4 bytes

Size of double = 8 bytes

Size of char = 1 byte

Mr. Phanindra KumarKatakam, Asst. Professor, Univ. Arts & Science College, KU, Wgl.

Programming with C & C++ B.Com. I Year II Semester

UNIT-II: WORKING WITH CONTROL STATEMENTS, LOOPS

Conditional statements: Introduction - If statements - If-else statements - nested if-
else - break statement-continue statement-go to statement-Switch statements. Looping
statements: Introduction- While statements — Do-while statements - For Statements-
nested loop statements.

Control Statements:

This deals with the various methods that C can control the flow of logic in a
program. Control statements can be classified as un-conditional and conditional branch
statements and loop or iterative statements. The Branch type includes:

Conditional: Loop or iterative: Un-conditional:
o if « for loop e goto

o if - else while loop * break

o Nested if e do-while loop e return

e switch case statement e continue

Conditional Statements:

Sometimes we want a program to select an action from two or more alternatives.
This requires a deviation from the basic sequential order of statement execution. Such
programs must contain two or more statements that might be executed, but have some
way to select only one of the listed options each time the program is run. This is known
as conditional execution.

if statement:

Statement or set of statements can be conditionally executed using if statement.
Here, logical condition is tested which, may either true or false. If the logical test is true
(non zero value) the statement that immediately follows if is executed. If the logical
condition is false the control transfers to the next executable statement.

The general syntax of simple if statement is:
if (condition)
statement_to_execute_if condition_is_true;
or
if (condition)
{
statement 1;
statement 2;

———)

}

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year II Semester

Flowchart Segment:

Statement 1

if - else statement:

The if statement is used to execute only one action. If there are two statements to
be executed alternatively, then if-else statement is used. The if-else statement is a two
way branching. The general syntax of simple if - else statement is:

if (condition)

statement_to_execute_if_condition_is_true;

else

statement_to_execute_if condition_is_false;

Where, statement may be a single statement, a block, or nothing, and the else
statement is optional. The conditional statement produces a scalar result, i.e., an integer,
character or floating point type.

It is important to remember that an if statement in C can execute only one
statement on each branch (T or F). If we desire that multiple statements be executed on
a branch, we must block them inside of a { and } pair to make them a single compound
statement. Thus, the C code for the flowchart segment above would be:

Flowchart Segment:

Statement 2 Statement 1

Programming with C & C++ B.Com. I Year Il Semester

Example:
main()
{
int num;
printf(“ Enter a number : “);
scanf(“%d”,&num);
if (num % 2 == 0)
printf(“ Even Number “);
else
printf(“ 0dd Number “);

}

Nested if statement:

The ANSI standard specifies that 15 levels of nesting must be supported. In C, an
else statement always refers to the nearest if statement in the same block and not
already associated with if.

Example:
main()
{
int num;
printf(“ Enter a number : “);
scanf(“%d”,&num);
if(num>0)
{
if(num % 2 == 0)
printf(“Even Number*);
else
printf(“Odd Number*);
}

else

{

if(num<0)
printf(“Negative Number*);
else

printf(“ Number is Zero“);

}
}

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year II Semester

Flowchart Segment:

Cc:-nditw

F Statement

if-else-if Ladder:

When faced with a situation in which a program must select from many
processing alternatives based on the value of a single variable, an analyst must expand
his or her use of the basic selection structure beyond the standard two processing
branches offered by the if statement to allow for multiple branches. One solution to this
is to use an approach called nesting in which one (or both) branch(es) of a selection
contain another selection. This approach is applied to each branch of an algorithm until
enough additional branches have been created to handle each alternative. The general
syntax of a nested if statement is:

if (expression)

statement1

else if (expression)

statement?2

else
statement3

Example:
#include <stdio.h>
void main (void)
{
int N; /* Menu Choice */
printf ("MENU OF TERMS\n\n");
printf ("1. Single\n");
printf ("2. Double\n");
printf ("3. Triple\n");
printf ("4. Quadruple\n\n");

Programming with C & C++ B.Com. I Year II Semester

printf ("Enter the numbe (1-4): ");
scanf ("%d", &N);

if (N == 1) printf ("one");

else if (N == 2) printf ("two");
else if (N == 3) printf ("three");
else if (N == 4) printf ("four");
else printf ("ERROR");

}

Flowchart Segment:

FOUR ERROR

The ?: operator (ternary):
The ? (ternary condition) operator is a more efficient form for expressing simple if
statements. It has the following form:

expressionl ? expressionZ : expression3
It simply states as:

if expressionl then expressionZ else expression3
Example:
Assign the maximum of a and b to z:

main()

{

int a,b,z;

printf(“\n Enter a and b “);

Programming with C & C++ B.Com. I Year Il Semester

scanf(“%d%d”,&a,&b);

z=(a>b)?a:b;
printf(“Maximum number: %d”, z);
}

which is the same as:

if(a>b)

zZ=a;

else

z=b;

The switch case statement:

The switch-case statement is used when an expression’s value is to be checked
against several values. If a match takes place, the appropriate action is taken. The
general form of switch case statement is:

switch (expression)

{

case constantl:

statement;

break;

case constant2:

statement;

break;

default:

statement;

break;

}

In this construct, the expression whose value is being compared may be any valid
expression, including the value of a variable, an arithmetic expression, a logical
comparison rarely, a bit wise expression, or the return value from a function call, but
not a floating-point expression. The expression’s value is checked against each of the
specified cases and when a match occurs, the statements following that case are
executed. When a break statement is encountered, control proceeds to the end of the
switch - case statement.

The break statements inside the switch statement are optional. If the break
statement is omitted, execution will continue on into the next case statements even
though a match has already taken place until either a break or the end of the switch is
reached.

The keyword case may only be constants, they cannot be expressions. They may
be integers or characters, but not floating point numbers or character string. Case
constants may not be repeated within a switch statement. The last case is a special
keyword default. The default statement is executed if no matches are found. The default
is optional and if it is not present, no action takes place if all matches fail.

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year II Semester

Three important things to know about switch statement:

1. The switch differs from the if in that switch can only test for equality whereas if can
evaluate any type of relational or logical expression.

2. No two case constants in the same switch can have identical values. But, a switch
statement enclosed by an outer switch may have case constants and either same.

3. If character constants are used in the switch statement, they are automatically
converted to integers.

Flowchart Segment - Case Selection:

In the example below, five possible paths might be followed depending on the
value stored in the character storage location X. Each path is selected based on the
individual value(s) that might be stored in X.

switch
(expression)

Statement ——P» Break —P

Statement —pp Break —

Statement |- B Break —P

Default
Statement

#-l
Next
Statement

Example 1:
main()
{
char gender;
printf (“Enter Gender code:(M/F)“);
scanf (“%c”, &gender);
switch (gender)
{
case ‘M’ : printf (“ Male“);
break;
case ‘F’: prrintf (“Female”);
break;

Programming with C & C++ B.Com. I Year Il Semester

default : printf (“Wrong code");

}

}
We can also have null statements by just including a “;” or let the switch statement fall
through by omitting any statements (see example below).

Example 2:
switch (letter)
{
case ‘A"
case 'E":
case 'I":
case ‘0"
case 'U":
numberofvowels++;
break;
case ‘"
numberofspaces++;
break;
default:
numberofconstants++;
break;

}

AN

In the above example if the value of letter is "A', 'E', 'I', 0" or "U' then
numberofvowels is incremented. If the value of letter is then numberofspaces is
incremented. If none of these is true then the default condition is executed, that is
numberofconstants is incremented.

N

Un-conditional (Jump) statements:

C has four jump statements to perform an unconditional branch:
e return

e goto

e break and

e continue

return statement:

A return statement is used to return from a function. A function can use this
statement as a mechanism to return a value to its calling function. If now value is
specified, assume that a garbage value is returned (some compilers will return 0).

The general form of return statement is:

return expression;

Where expression is any valid rvalue expression.

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year Il Semester

Example:

return x; or return(x);

return X + y or return(x +y);

return rand(x); or return(rand(x));

return 10 * rand(x); or return (10 * rand(x));

We can use as many return statements as we like within a function. However, the
function will stop executing as soon as it encounters the first return. The } that ends a
function also causes the function to return. It is same way as return without any
specified value.

A function declared as void may not contain a return statement that specifies a
value.

goto statement:

goto statement provides a method of unconditional transfer control to a labeled
point in the program. The goto statement requires a destination label declared as:

label:

The label is a word (permissible length is machine dependent) followed by a
colon. The goto statement is formally defined as:
goto label;

«

«

label:
target statement

Since, C has a rich set of control statements and allows additional control using
break and continue, there is a little need for goto. The chief concern about the goto is its
tendency to render programs unreachable. Rather, it a convenience, it used wisely, can
be a benefit in a narrow set of programming situation. So the usage of goto is highly
discouraged.

Example:
Void main()
{
intx=6,y=12;
if(x==y)
X++;
else
goto error;
error:
printf (“Fatal error; Exiting”);
}

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year Il Semester

The compiler doesn’t require any formal declaration of the label identifiers.

break statement:

We can use it to terminate a case in a switch statement and to terminate a loop.
Consider the following example where we read an integer values and process them
according to the following conditions. If the value we have read is negative, we wish to
print an error message and abandon the loop. If the value read is greater than 100, we
wish to ignore it and continue to the next value in the data. If the value is zero, we wish
to terminate the loop.

Example:

void main()

{

int value;

while (scanf(“%d", &value) == 1 && value != 0)

{

if(value < 0)

{

printf (“Illegal value\n");

break; /*Terminatetheloop*/

}

if(value >100)

{

printf(“Invalid value\n");

continue; /* Skip to start loop again */

}

} /* end while value != 0 */

}

Continue statement:

The continue statement forces the next iteration of the loop to take place,
skipping any code in between. But the break statement forces for termination.
Example 1:

/* Program to print the even numbers below 100 */

#include<stdio.h>

void main()

{

intx;

for(x = 1; x < 10; x++)

{

if(x % 2)

continue;

printf (“%d\t”, x)

}

}

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year II Semester

An odd number causes continue to execute and the next iteration to occur, by
passing the printf () statement. A continue statement is used within a loop (i.e for,
while, do - while) to end an iteration in while and do-while loops, a continue statement
will cause control to go directly to the conditional test and then continue the looping
process. In the case of for, first the increment part of the loop is performed, next the
conditional test is executed and finally the loop continues.

Example 2:
main()
{
char ch;
while (1)
{
ch = getchar();
if(ch==EOF)
break;
if (iscntrl (ch))
continue;
else
printf (“\n not a control character”);

}

Distinguishing between break and continue statement:

Break Continue
Used to terminate the loops or to exist Used to transfer the control to the start
loop from a switch. of loop.
The break statement when executed The continue statement when executed
causes immediate termination of loop cause immediate termination of the
containing it. current iteration of the loop.

The exit () function:

Just as we can break out of a loop, we can break out of a program by using the
standard library function exit(). This function causes immediate termination of the
entire program, forcing a return to the operation system.

The general form of the exit() function is:
void exit (int return_code);

The value of the return_code is returned to the calling process, which is usually
the operation system. Zero is generally used as a return code to indicate normal
program termination.

Programming with C & C++

Example:

Void menu(void)

{

charch;

printf(“B: Breakfast“);
printf(“L: Lunch®);

printf(“D: Dinner”);
printf(“E: Exit”);
printf(“Enter your choice: “);
do

{

ch = getchar();

switch (ch)

{

case'B”

printf (“time for breakfast”);
break;

case'l”:
printf(“timeforlunch”);
break;

case’D”:
printf(“timefordinner”);
break;

case‘E”:

exit (0); /* return to operating system */
}

} while (ch !=‘B’ && ch != ‘L’ && ch !=‘D’);
}

B.Com. I Year II Semester

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year Il Semester

LOOPING AND ITERATION:

Looping is a powerful programming technique through which a group of
statements is executed repeatedly, until certain specified condition is satisfied. Looping
is also called a repetition or iterative control mechanism.

C provides three types of loop control structures. They are:
o for statement

¢ while statement

¢ do-while statement

The for statement:

The for loop statement is useful to repeat a statement/s a known number of
times. The general syntax is as follows:

for (initialization; condition; operation)

statement;

The initialization is generally an assignment statement that is used to set the
loop control variable.

The condition is an expression(relational/logical/arithmetic/bitwise ...) that
determines when the loop exists.

The Operation defines how the loop control variable changes each time the loop
is repeated.

We must separate these three major sections by semicolon.

The for loop continues to execute as long as the condition is true. Once the
condition becomes false, program execution resumes on the statement following the for.
The control flow of the for statement is as follows:

Example 1:

// printing all odd and even numbers between 1 to 5
intx;

main ()

{

for (x=1; x <=5 ; x++)

{

if(x%2==0)

printf(“ %d is EVEN \n” x);
else

printf(“ %d isODD \n”,x);

}

}

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year II Semester

Output to the screen:
1is ODD

2 is EVEN

3is0ODD

4 is EVEN

5is EVEN

Example 2:

// sum the squares of all the numbers between 1 to 5
main()

{

intx, sum = 0;

for (x=1; x<=5; x ++)

{

sum = sum + x *x;

}

printf (“\n Sum of squares of all the numbers between 1to 5 = %d ”, sum);
}

Output to the screen:
Sum of squares of all the numbers between 1 to 5 =55

Flowchart Segment - for Statement:

Initialization
Condition

Increment

v

Statement in
The loop

MNext
Statement

The comma (,) operator is used to extend the flexibility of the for loop. It allows the

general form to be modified as follows:
for (initialization_1, initialization_2; condition; operation_1, operation_2)
statement;

Programming with C & C++ B.Com. I Year Il Semester

All the following are legal for statements in C. The practical application of such
statements is not important here, we are just trying to illustrate peculiar features that
may be useful:

1. for (x=0; ((x>3) && (x<9)); x++)

2. for (x=0,y=4; ((x>3) && (y<9)); x++, y+=2)

3. for (x=0, y=4, z=4000; z; z/=10)

The second example shows that multiple expressions can be separated by a, (comma).
Example:

main()

{

intj;

double degC, degF;

clrscr ();

printf (“\n Table of Celsius and Fahrenheit degrees \n\n");
printf (“Celsius Degree \t Fahrenheit Degree \n")

degC =-20.0;
for (j =1;j <= 6; j++)
{

degC = degC+ 20.0;
degF = (degC *9.0/5.0) + 32.0;
printf (“\n %7.21f\t\ %7.21f “, degC, degF);

}

}

Output:

Table of Celsius and Fahrenheit degrees

Celsius Degree Fahrenheit Degree
0.00 32.00
20.00 68.00
40.00 104.00
60.00 140.00
80.00 176.00
100.00 212.00

2.4.2. Nested for loop:
Nested loops consist of one loop placed inside another loop. An example of a nested for
loop is:

for (initialization; condition; operation)

{

for (initialization; condition; operation)

{

statement;

}

statement;

}

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year II Semester
In this example, the inner loop runs through its full range of iterations for each single

iteration of the outer loop.
Example:
Program to show table of first four powers of numbers 1 to 9.
#include <stdio.h >
void main()
{
inti, j, k, temp;
printf("I\tI*2\tI*3\tI*4 \n");

printf("-----=-==mmmmmeeeeeee e \n");

for (i=1;i1<10;i++) /* Outer loop */

{

for (j =1;j<5;j++) /* 1stlevel of nesting */
{

temp=1;

for(k=0; k <j; k++)
temp=temp*[;

printf ("%d\t", temp);
}

printf ("\n");

}

}

Output to the screen:

I 172 I~3 I~4
1 1 1

2 8 16

3 9 27 81

4 16 64 256
5 25 125 625
6 36 216 1296
7 49 343 2401
8 64 512 4096
9 81 729 6561

Programming with C & C++ B.Com. I Year Il Semester

Infinite for loop:
We can make an endless loop by leaving the conditional expression empty as
given below:
for(;;)
printf(“This loop will run for ever”);
To terminate the infinite loop the break statement can be used anywhere inside
the
body of the loop. A sample example is given below:
for(;;)
{
ch = getchar ();
if(ch=="A")
break;
}
printf(“You typed an A”);
This loop will run until the user types an A at the keyboard.

for with no bodies:

A C-statement may be empty. This means that the body of the for loop may also
be empty. There need not be an expression present for any of the sections. The
expressions are optional.

Example 1:

/* The loop will run until the user enters 123 */
for(x=0;x!=123;)

scanf(“%d”, &x);

This means that each time the loop repeats, ‘X’ is tested to see if it equals 123, but
no further action takes place. If you type 123, at the keyboard, however the loop
condition becomes false and the loop terminates.

The initialization sometimes happens when the initial condition of the loop
control variable must be computed by some complex means.

Example 2:

/* Program to print the name in reverse order. */
#include<conio.h>
#include<string.h>
#include<stdio.h>
void main()

{

char s[20];

intx;

clrscr ();

printf ("\nEnter your name: ");

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year Il Semester

gets (s);

x = strlen (s);
for(;x>0;)

{

—X;

printf ("%c\t", s[x]);
}

}

Output to the screen:
Enter your name: KIRAN
NARIK

The while statement:
The second loop available in ‘C’ is while loop.
The general format of while loop is:

while (expression)

statement

A while statement is useful to repeat a statement execution as long as a condition
remains true or an error is detected. The while statement tests the condition before
executing the statement.

The condition, can be any valid C languages expression including the value of a
variable, a unary or binary expression, an arithmetic expression, or the return value
from a function call.

The statement can be a simple or compound statement. A compound statement
in a while statement appears as:

while (condition)

{

statementl;

statement2;

}

With the if statement, it is important that no semicolon follow the closing
parenthesis, otherwise the compiler will assume the loop body consists of a single null
statement.

This usually results in an infinite loop because the value of the condition will not
change within the body of the loop.

Example:
main()
{
intj=1;
double degC, degF;
clrscr ();
printf (“\n Table of Celsius and Fahrenheit degrees \n\n");
printf (“Celsius Degree \t Fahrenheit Degree \n")

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year II Semester

degC =-20.0;
while (j <= 6)
{

degC = degC+ 20.0;
degF = (degC *9.0/5.0) + 32.0;
printf (“\n %7.21f\t\ %7.21f “, degC, degF);

jt+;

}

}
Output:
Table of Celsius and Fahrenheit degrees
Celsius Degree Fahrenheit Degree
0.00 32.00
20.00 68.00
40.00 104.00
60.00 140.00
80.00 176.00
100.00 212.00

Flowchart Segment - while Statement:

while F
> (Condition)
Statement in MNext
the while loop Statement

Because the while loop can accept expressions, not just conditions, the following are all
legal:

while(x--);

while(x =x+1);

while(x += 5);

Using this type of expression, only when the result of x--, x=x+1, or x+=5,
evaluates to 0 will the while condition fail and the loop be exited.

We can go further still and perform complete operations within the while
expression:

while(i++ < 10);

The countsiup to 10.

while((ch = getchar()) !="q")

putchar(ch);

Programming with C & C++ B.Com. I Year II Semester
This uses C standard library functions: getchar () to reads a character from the

keyboard and putchar () to writes a given char to screen. The while loop will proceed to
read from the keyboard and echo characters to the screen until a 'q' character is read.

Nested while:
Example:
Program to show table of first four powers of numbers 1 to 9.
#include <stdio.h >
void main()
{
inti, j, k, temp;
printf("I\tI*2\tI*3\tI*4 \n");

printf("---------m-mmmm e \n");
i=1;
while (i < 10) /* Outer loop */
{
=1
while (j < 5) /* 1st level of nesting */
{
temp=1;
k=1;
while (k <j)
{
temp = temp * i;
k++;
}
printf ("%d\t", temp);
jt+;
}
printf ("\n");
i++;
}
}
Output to the screen:
I 172 1~3 1~4
1 1 1 1
2 8 16
3 o 27 81
4 16 64 256
5 25 125 625
6 36 216 1296
7 49 343 2401
8 64 512 4096
o 81 729 6561

Programming with C & C++ B.Com. I Year II Semester
The do-while statement:

The third loop available in C is do — while loop.
The general format of do-while is:

do

statement;

while (expression);

Unlike for and while loops, which tests the condition at the top of the loop. The
do - while loop checks its condition at the bottom of the loop. This means that the do -
while loop always executes first and then the condition is tested. Unlike the while
construction, the do - while requires a semicolon to follow the statement’s conditional
part.

If more than one statement is to be executed in the body of the loop, then these
statements may be formed into a compound statement as follows:
do

{

statement1;
statement?2;
} while (condition);

Flowchart Segment of do-while Statement:

| do -~
v

Statement
in the
loop

while
(Condition)

MNext
Statement

Example 1:
include <stdio.h>
main()
{
do
{
printf("x = %d\n", x--);
} while(x > 0);
}

Output to the screen:
X=3

Programming with C & C++ B.Com. I Year II Semester
X=2
X=1
Example 2:
#include <stdio.h>
void main()
{
char ch;
printf("T: Train\n");
printf("C: Car\n");
printf("S: Ship\n");
do
{
printf("\nEnter your choice: ");
fflush(stdin);
ch = getchar();
switch(ch)
{
case 'T"
printf("\nTrain");
break;
case 'C":
printf("\nCar");
break;
case'S":
printf("\nShip");
break;
default:
printf("\n Invalid Choice");
}
} while(ch == "T"|| ch=="C" || ch =="S");
}
Output to the screen:
T: Train
C: Car
S: Ship
Enter your choice: T
Train
Distinguishing between while and do-while loops:

While loop Do-while loop
The while loop tests the condition The do-while loop tests the condition
before each iteration. after the first iteration.

If the condition fails initially the loop is
skipped entirely even in the first
iteration.

Even if the condition fails initially the
loop is executed once.

Programming with C & C++ Unit - III

UNIT-III: FUNCTIONS, ARRAYS AND STRINGS

Functions: Definition and declaration of functions- Function proto type-return statement-
types of functions and Built in functions. User defined functions: Introduction - Need for user
defined functions - Components of functions. Arrays: Introduction - Defining an array -
Initializing an array - One dimensional array - Multi dimensional array. Strings: Introduction -
Declaring, initializing string and Handling strings - String handling functions. Pointers:
Features of Pointers - Declaration of Pointers - Advantages of Pointers.

Functions:

Definition: A function is a sub-Program or) self contained program that is defined for
performing a specific task, it is a reusable block of code that gets executed on calling it. It can be
treated as sub program. The concept of reusability is achieved using functions; every function
in “c” language should return a value.

In other words, A function is a group of statements that together perform a task. Every
C program has at least one function, which is main(), and all the most trivial programs can
define additional functions.

You can divide up your code into separate functions. How you divide up your code
among different functions is up to you, but logically the division is such that each function
performs a specific task.

A function declaration tells the compiler about a function's name, return type, and
parameters. A function definition provides the actual body of the function.

The C standard library provides numerous built-in functions that your program can
call. For example, strcat() to concatenate two strings, memcpy()to copy one memory
location to another location, and many more functions.

A function can also be referred as a method or a sub-routine or a procedure, etc.

Defining a Function
The general form of a function definition in C programming language is as follows -

return_type function_name(parameter list) {
body of the function

}

A function definition in C programming consists of a function header and a function body. Here
are all the parts of a function -

o Return Type - A function may return a value. The return_type is the data type of the
value the function returns. Some functions perform the desired operations without
returning a value. In this case, the return_type is the keyword void.

e Function Name - This is the actual name of the function. The function name and the
parameter list together constitute the function signature.

o Parameters - A parameter is like a placeholder. When a function is invoked, you pass a
value to the parameter. This value is referred to as actual parameter or argument. The
parameter list refers to the type, order, and number of the parameters of a function.
Parameters are optional; that is, a function may contain no parameters.

Mr. K. Phanindra Kumar, Asst. Professor, Univ. Arts & Science College, Subedari, Wgl.

Programming with C & C++ Unit - III

e Function Body - The function body contains a collection of statements that define
what the function does.

Function Declarations
A function declaration tells the compiler about a function name and how to call the
function. The actual body of the function can be defined separately.
A function declaration has the following parts -
return_type function_name(parameter list);
For the above defined function max(), the function declaration is as follows -
int max(int num1, int num2);
Parameter names are not important in function declaration only their type is required,
so the following is also a valid declaration -
int max(int, int);
Function declaration is required when you define a function in one source file and you
call that function in another file. In such case, you should declare the function at the top of the
file calling the function.

Function prototype

A function prototype is simply the declaration of a function that specifies function's
name, parameters and return type. It doesn't contain function body.

A function prototype gives information to the compiler that the function may later be
used in the program.

Syntax of function prototype
returnType functionName(typel argumentl, type2 argument2, ...);

In the above example, int addNumbers(int a, int b); is the function prototype which provides
the following information to the compiler:
name of the function is addNumbers()
return type of the function is int
two arguments of type int are passed to the function
The function prototype is not needed if the user-defined function is defined before
the main() function.
The Return Statement
o The return statement exits the called function and returns control back to the calling
function.
o Once a return statement is executed, no further instructions within the function
are executed.
e Asingle return value (of the appropriate type) may be returned.
o Parentheses are allowed but not required around the return value.
o A function with a void return type will not have a return value after the return
statement.

Mr. K. Phanindra Kumar, Asst. Professor, Univ. Arts & Science College, Subedari, Wgl.

Programming with C & C++ Unit - III

e More than one return statement may appear in a function, but only one will ever be
executed by any given function call.

o (All returns other than the last need to be controlled by logic such as "if" blocks.
)

o If a function does not contain a return statement, most compilers will add one
automatically at the end of the routine, and may generate a warning message. The
return value, if any, is undefined in this case.

e "main()" is technically a function, and should return 0 upon successful completion, or a
non-zero value otherwise. This is ignored by many programmers, but some compilers
will issue warning messages if main() does not contain a return statement.

Based on function definition, Functions are classified into two types. They are:
1. Built-in/Library Functions/Predefined Functions
2. User defined Functions

Built-in/Library Functions/Pre defined Functions: These are the functions which are
already predefined to the c-compiler by the developers of ‘C.

Library functions are the built in function that are already defined in the C library. The
prototype of these functions are written in header files. So we need to include respective
header files before using a library function. For example, the prototype of math functions
like pow(), sqrt(), etc is present in math.h, the prototype of exit(), malloc(), calloc() etc is in
stdlib.h and so on.

User defined Functions: The functions which are written by the user as per his requirement
are called as user defined functions.

hose functions that are defined by user to use them when required are called user-defined
function. Function definition is written by user. main() is an example of user-defined function.

Components of Functions:

Programs using functions will contain the 3 major components.
1. Function Prototype Declaration
2. Function Definition
3. Function call

Function Prototype Declaration:

Before the function is defined in the program the function name and its details should
be provided to the compiler and it can be done by declaring the function above the main
function and such statement is known as function prototype.

Syntax: return_type function_name(arguments/parameters list);
The prototype of function consists of 3 parts:

1. Function name

2. Argument list

3. Return type of the function

Mr. K. Phanindra Kumar, Asst. Professor, Univ. Arts & Science College, Subedari, Wgl.

Programming with C & C++ Unit - III

The function name specifies the name of the function and tells the compiler that, it can use the
function with this name.
The arguments in the function specify the type and no. of arguments that are to be used within
the function. The arguments are also known as parameters.
The return type specifies the type of value to be returned by the function.
The function prototype declaration should always terminate with semicolon.

Ex: void display();

Here display is the function name and it does not contain any arguments and it does not
return anything that is the reason we written void as the return type.

int add(int,int);

Here add is the function name and it contains two arguments of integer type and the

return type is int.

Function Definition:

It is the actual function that contains the programming statements to perform a specific
task. The programming statements should be written in between the { } braces. The function
definition is also called as the body of the function.

Syntax: return_type function_name(argument list)

{

---- statement(s);

Function call:

Defining a function does not do anything. A function performs its tasks (or) operations
when it is executed. To execute the function it should be called. A function can be called by the
name of the function and such statement is known as function call.

While calling the function the required arguments should be passed(if necessary) and if
function returns any value then that value should be stored in some variable for further
accessing of it.
Syntax: function_name(argument list);
Ex: display();

add(10,20);

A function can be called by two ways. They are:
e (Call by value
e (Call by reference

Call by value
When a function is called by value, a copy of actual argument is passed to the called
function. The copied arguments occupy separate memory location than the actual argument. If

Mr. K. Phanindra Kumar, Asst. Professor, Univ. Arts & Science College, Subedari, Wgl.

Programming with C & C++ Unit - III

any changes done to those values inside the function, it is only visible inside the function. Their
values remain unchanged outside it.

Call by reference

In this method of passing parameter, the address of argument is copied instead of value.
Inside the function, the address of argument is used to access the actual argument. If any
changes is done to those values inside the function, it is visible both inside and outside the
function.

User defined Functions are divided into four types:
1. Functions with no arguments and no return value
2. Functions with argument and no return value
3. Functions with no arguments and return value
4. Functions with argument and return value

Function with no argument and no return type:
In this type of functions the functions will not carry any arguments to the called function
and called function does not return any values to the function call.

Functions with argument and no return value:
In this type of functions the functions will carry arguments to the called function and
called function does not return any values to the function call.

Functions with no arguments and return value:
In this type of functions the functions will not carry any arguments to the called function
and called function will return any value to the function call.

Functions with argument and return value:
In this type of functions the functions will carry arguments to the called function and
called function will return any value to the function call.

Arrays: Introduction - Defining an array - Initializing an array - One dimensional array -
Multi dimensional array.

Introduction:

An array is defined as the collection of similar type of data items stored at contiguous
memory locations. Arrays are the derived data type in C programming language which can
store the primitive type of data such as int, char, double, float, etc. It also has the capability to
store the collection of derived data types, such as pointers, structure, etc. The array is the
simplest data structure where each data element can be randomly accessed by using its index
number.

C array is beneficial if you have to store similar elements. For example, if we want to
store the marks of a student in 6 subjects, then we don't need to define different variables for

Mr. K. Phanindra Kumar, Asst. Professor, Univ. Arts & Science College, Subedari, Wgl.

Programming with C & C++ Unit - III

the marks in the different subject. Instead of that, we can define an array which can store the
marks in each subject at the contiguous memory locations.

By using the array, we can access the elements easily. Only a few lines of code are
required to access the elements of the array.

Properties of Array
The array contains the following properties.
o Each element of an array is of same data type and carries the same size, i.e., int = 4
bytes.
o Elements of the array are stored at contiguous memory locations where the first
element is stored at the smallest memory location.
o Elements of the array can be randomly accessed since we can calculate the address of
each element of the array with the given base address and the size of the data element.

Advantage of C Array

1) Code Optimization: Less code to the access the data.

2) Ease of traversing: By using the for loop, we can retrieve the elements of an array easily.
3) Ease of sorting: To sort the elements of the array, we need a few lines of code only.

4) Random Access: We can access any element randomly using the array.

Disadvantage of C Array
1) Fixed Size: Whatever size, we define at the time of declaration of the array, we can't exceed
the limit. So, it doesn't grow the size dynamically like LinkedList which we will learn later.

Declaring Arrays

To declare an array in C, a programmer specifies the type of the elements and the
number of elements required by an array as follows -

type arrayName [arraySize [;

This is called a single-dimensional array. The arraySize must be an integer constant
greater than zero and type can be any valid C data type. For example, to declare a 10-element
array called balance of type double, use this statement -

double balance[10];
Here balance is a variable array which is sufficient to hold up to 10 double numbers.

Initializing Arrays
You can initialize an array in C either one by one or using a single statement as follows

double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};

The number of values between braces { } cannot be larger than the number of elements
that we declare for the array between square brackets [].

If you omit the size of the array, an array just big enough to hold the initialization is
created. Therefore, if you write -
double balance[] ={1000.0, 2.0, 3.4, 7.0, 50.0};

Mr. K. Phanindra Kumar, Asst. Professor, Univ. Arts & Science College, Subedari, Wgl.

Programming with C & C++ Unit - I11

You will create exactly the same array as you did in the previous example. Following is

an example to assign a single element of the array -
balance[4] = 50.0;

The above statement assigns the 5t element in the array with a value of 50.0. All arrays
have 0 as the index of their first element which is also called the base index and the last index
of an array will be total size of the array minus 1. Shown below is the pictorial representation
of the array we discussed above -

0 1 2 3 4

balance 1000.0 2.0 3.4 7.0 50.0

Accessing Array Elements

An element is accessed by indexing the array name. This is done by placing the index of
the element within square brackets after the name of the array. For example -
double salary = balance[9];

The above statement will take the 10t element from the array and assign the value to
salary variable.

One Dimensional Array:
Conceptually you can think of a one-dimensional array as a row, where elements are
stored one after another.

arr

an srray of 6 elemeants

Syntax: datatype array_name[size];

datatype: It denotes the type of the elements in the array.
array_name: Name of the array. It must be a valid identifier.
size: Number of elements an array can hold.

here are some example of array declarations:

1 int num[100];
2 float temp[20];
3 char ch[50];

num is an array of type int, which can only store 100 elements of type int.
temp is an array of type float, which can only store 20 elements of type float.
ch is an array of type char, which can only store 50 elements of type char.
Note: When an array is declared it contains garbage values.

The individual elements in the array:

1 num[0], num[1], num|[2],, num[99]

2 temp[0], temp[1], temp[2], ..., temp[19]

3 ch[0], ch[1], ch[2], ..., ch[49]

We can also use variables and symbolic constants to specify the size of the array.

Programming with C & C++ Unit - I1I

#define SIZE 10

int main()

{

int size = 10;

int my_arr1[SIZE]; // ok
int my_arr2[size]; // not allowed until C99

// .

}

C programming language allows multidimensional arrays. Here is the general form of a
multidimensional array declaration -
type name|[sizel][size2]...[sizeN];

For example, the following declaration creates a three dimensional integer array -
int threedim[5][10][4];

Two-dimensional Arrays

The simplest form of multidimensional array is the two-dimensional array. A two-
dimensional array is, in essence, a list of one-dimensional arrays. To declare a two-
dimensional integer array of size [x][y], you would write something as follows —
type arrayName [x][y |;

Where type can be any valid C data type and arrayName will be a valid C identifier. A
two-dimensional array can be considered as a table which will have x number of rows and y
number of columns. A two-dimensional array a, which contains three rows and four columns
can be shown as follows -

Column 0 Column 1 Column 2 Column 3
Row 0 a[0][0] a[0][1] a[0][2] al[0][3]
Row 1 a[1][0] af[1][1] | a[1][2] af[1][3]
Row 2 af2][0] a[2][1] a[2][2] a[2][3]

Thus, every element in the array a is identified by an element name of the form a[i][j
], where 'a' is the name of the array, and 'i' and 'j' are the subscripts that uniquely identify
each elementin'a’.
Initializing Two-Dimensional Arrays

Multidimensional arrays may be initialized by specifying bracketed values for each row.
Following is an array with 3 rows and each row has 4 columns.

int a[3][4] ={
{0,1, 2,3}, /* initializers for row indexed by 0 */
{4,5,6,7}, /* initializers for row indexed by 1 */
{8,9,10,11} /* initializers for row indexed by 2 */

Programming with C & C++ Unit - I1I

b

The nested braces, which indicate the intended row, are optional. The following

initialization is equivalent to the previous example -
int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};

Accessing Two-Dimensional Array Elements
An element in a two-dimensional array is accessed by using the subscripts, i.e., row

index and column index of the array. For example -
int val = a[2][3];
The above statement will take the 4th element from the 3rd row of the array. You can

verify it in the above figure.

Strings: Introduction - Declaring, initializing string and Handling strings - String

handling functions.

Strings are actually one-dimensional array of characters terminated by a null character
"\0'. Thus a null-terminated string contains the characters that comprise the string followed
by a null.
The following declaration and initialization create a string consisting of the word
"Hello". To hold the null character at the end of the array, the size of the character array
containing the string is one more than the number of characters in the word "Hello."

char greeting[6] = {'H','e, ', 'l', '0’,"\0'};

If you follow the rule of array initialization then you can write the above statement as

follows -
char greeting[] = "Hello";

Following is the memory presentation of the above defined string in C/C++ -

[n d ex i} 1 2 3 4 5
Variable H e | I 0 \O
Address 0x23451 | Ox23452 0x23453 0x23454 | Dx23455 | Ox23456

Actually, you do not place the null character at the end of a string constant. The C
compiler automatically places the "\0' at the end of the string when it initializes the array. Let

us try to print the above mentioned string -

#include <stdio.h>

int main () {

char greeting[6] = {'H', 'e", 'I', 'l', '0’, "\0'};
printf("Greeting message: %s\n", greeting);

Programming with C & C++ Unit - III

return 0;

}

When the above code is compiled and executed, it produces the following result -
Greeting message: Hello

Declare and initialize a String
A string is a simple array with char as a data type. 'C' language does not directly support
string as a data type. Hence, to display a string in 'C’, you need to make use of a character array.

The general syntax for declaring a variable as a string is as follows,
char string_variable_name [array_size];

The classic string declaration can be done as follow:
char string_name[string_length] = "string";

The size of an array must be defined while declaring a string variable because it used to
calculate how many characters are going to be stored inside the string variable. Some valid
examples of string declaration are as follows,
char first_name[15]; //declaration of a string variable
char last_name[15];

The above example represents string variables with an array size of 15. This means that
the given character array is capable of holding 15 characters at most. The indexing of array
begins from 0 hence it will store characters from a 0-14 position. The C compiler
automatically adds a NULL character '\0' to the character array created.

Let's study the initialization of a string variable. Following example demonstrates the
initialization of a string variable,
char first_name[15] = "ANTHONY";
char first_name[15] = {'A",'N','T",'H",'O",'N",'Y",'\0'}; // NULL character "\0' is required at end in
this declaration
char string1 [6] = "hello";/* string size = 'h'+'e'+'I'+'l'+'0'+"NULL" = 6 */
char string? [] = "world"; /* string size = 'w'+'0'+'r'+'1'+'d"+"NULL" = 6 */
char string3[6] = {'h’,'e’,'l','l', '0', "\0'} ; /*Declaration as set of characters ,Size 6*/

In string3, the NULL character must be added explicitly, and the characters are enclosed
in single quotation marks.

'C' also allows us to initialize a string variable without defining the size of the character
array. It can be done in the following way,
char first_name[| = "NATHAN";

The name of a string acts as a pointer because it is basically an array.

Mr. K. Phanindra Kumar, Asst. Professor, Univ. Arts & Science College, Subedari, Wgl.

Programming with C & C++ Unit - III

STRING HANDLING FUNCTIONS:

strlen()_- calculates the length of a string

The strlen() function calculates the length of a given string.

The strlen() function takes a string as an argument and returns its length. The returned value is
of type long int.

It is defined in the <string.h> header file.

Example: C strlen() function

#include <stdio.h>
#include <string.h>
int main()

{
char a[20]="Program";
Char b[20]:{IPI'lrv’lov’lgv’lrv'vav'lmv'l\ov};

printf("Length of string a = %ld \n",strlen(a));
printf("Length of string b = %ld \n",strlen(b));

return 0;

Output

Length of stringa =7

Length of stringb =7

Note that the strlen() function doesn't count the null character \0 while calculating the length.

strcpy()_-_copies a string to another
The strcpy() function copies the string to the another character array.
strcpy() Function prototype

char* strcpy(char* destination, const char* source);

The strcpy() function copies the string pointed by source (including the null character) to the

character array destination.
The function also returns the copied array.

The strcpy() function is defined in the string.h header file.

Mr. K. Phanindra Kumar, Asst. Professor, Univ. Arts & Science College, Subedari, Wgl.

Programming with C & C++ Unit - III

Example: C strcpy()

#include <stdio.h>
#include <string.h>

int main()

{
char str1[10]= "awesome";
char str2[10];
char str3[10];

strcpy(str2, strl);
strcpy(str3, "well");
puts(str2);
puts(str3);

return 0;

Output

awesome
well

[t is important to note that the destination array should be large enough to copy the array.
Otherwise, it may result in undefined behavior.

strcmp()_- compares two strings

The strcmp() function compares two strings and returns 0 if both strings are identical.

C strcmp() Prototype

int strcmp (const char* strl, const char* str2);

The strcmp() function takes two strings and returns an integer.

The strcmp() compares two strings character by character.

If the first character of two strings is equal, the next character of two strings are compared.
This continues until the corresponding characters of two strings are different or a null
character '\0' is reached.

It is defined in the string.h header file.

Mr. K. Phanindra Kumar, Asst. Professor, Univ. Arts & Science College, Subedari, Wgl.

Programming with C & C++ Unit - III

Return Value from strcmp()

sglts;n Remarks

0 if both strings are identical (equal)

negative if the ASCII value of the first unmatched character is less than second.
positive if the ASCII value of the first unmatched character is greater than
integer second.

Example: C strcmp() function

#include <stdio.h>
#include <string.h>

int main()

{
char strl[] = "abcd", str2[] = "abCd", str3[] = "abcd";

int result;

// comparing strings strl and str2

result = stremp(strl, str2);
printf("strcmp(strl, str2) = %d\n", result);
// comparing strings strl and str3

result = strcemp(strl, str3);
printf("strcmp(stril, str3) = %d\n", result);

return 0;

}
Output

stremp(strl, str2) = 32
strcmp(strl, str3) =0

The first unmatched character between string strl and str2 is third character. The ASCII value
of 'c'is 99 and the ASCII value of 'C' is 67. Hence, when strings str1l and str2 are compared, the
return value is 32.

When strings strl and str3 are compared, the result is 0 because both strings are identical.

Mr. K. Phanindra Kumar, Asst. Professor, Univ. Arts & Science College, Subedari, Wgl.

Programming with C & C++ Unit - III

strcat()_- concatenates two strings
The function strcat() concatenates two strings.

In C programming, strcat() concatenates (joins) two strings.
The strcat() function is defined in <string.h> header file.

C strcat() Prototype

char *strcat(char *dest, const char *src)

It takes two arguments, i.e, two strings or character arrays, and stores the resultant
concatenated string in the first string specified in the argument.
The pointer to the resultant string is passed as a return value.

Example: C strcat() function

#include <stdio.h>
#include <string.h>
int main()

{

char str1[] = "This is ", str2[] = "programiz.com";

//concatenates strl and str2 and resultant string is stored in str1.
strcat(strl,str2);

puts(strl);
puts(str2);

return 0;

Output

This is programiz.com
programiz.com

Mr. K. Phanindra Kumar, Asst. Professor, Univ. Arts & Science College, Subedari, Wgl.

Programming with C & C++ Unit - III

Pointers: Features of Pointers - Declaration of Pointers - Advantages of Pointers.
Introduction:

A pointeris a variable that stores the address of another variable. Unlike other
variables that hold values of a certain type, pointer holds the address of a variable. For
example, an integer variable holds (or you can say stores) an integer value, however an integer
pointer holds the address of a integer variable.

Features of Pointers:

1. Pointers save memory space.

2. Execution time with pointers is faster because data are manipulated with the address,
that is, direct access to memory location.

3. Memory is accessed efficiently with the pointers. The pointer assigns and releases the
memory as well. Hence it can be said the Memory of pointers is dynamically allocated.

4. Pointers are used with data structures. They are useful for representing two-
dimensional and multi-dimensional arrays.

5. An array, of any type can be accessed with the help of pointers, without considering its
subscript range.

6. Pointers are used for file handling.

N

Pointers are used to allocate memory dynamically.
8. In C++, a pointer declared to a base class could access the object of a derived class.
However, a pointer to a derived class cannot access the object of a base class.

Uses of pointers:

1. To pass arguments by reference
For accessing array elements
To return multiple values
Dynamic memory allocation
To implement data structures

AN

To do system level programming where memory addresses are useful

Declaring a pointer

The pointer in ¢ language can be declared using * (asterisk symbol). It is also known as
indirection pointer used to dereference a pointer.

The pointer in C language is a variable which stores the address of another variable. This
variable can be of type int, char, array, function, or any other pointer. The size of the pointer
depends on the architecture. However, in 32-bit architecture the size of a pointer is 2 byte.

Consider the following example to define a pointer which stores the address of an integer.
1. intn=10;
1. int* p = &n; // Variable p of type pointer is pointing to the address of the variable n of type
integer.
2. int*a;//pointer to int
3. char *c;//pointer to char

Mr. K. Phanindra Kumar, Asst. Professor, Univ. Arts & Science College, Subedari, Wgl.

Programming with C & C++ Unit - III

Advantage of pointer

1) Pointer reduces the code and improves the performance, it is used to retrieving strings,
trees, etc. and used with arrays, structures, and functions.

2) We can return multiple values from a function using the pointer.

3) It makes you able to access any memory location in the computer's memory.

Mr. K. Phanindra Kumar, Asst. Professor, Univ. Arts & Science College, Subedari, Wgl.

Programming with C & C++ B.Com. I Year II Semester

UNIT-IV:
Structures: Features of Structures - Declaring and initialization of Structures -Structure
within Structure-Array of Structures- Enumerated data type-Unions-Definition and
advantages of Unions comparison between Structure & Unions.
Object Oriented Programming: Introduction to Object Oriented Programming - Structure
of C++ - Simple Program of C++ - Differences between C & C++

C Structures

Structure is a user-defined datatype in C language which allows us to combine data
of different types together. Structure helps to construct a complex data type which is more
meaningful. It is somewhat similar to an Array, but an array holds data of similar type only.
But structure on the other hand, can store data of any type, which is practical more useful.
For example: If | have to write a program to store Student information, which will have
Student's name, age, branch, permanent address, father's name etc, which included string
values, integer values etc, how can I use arrays for this problem, I will require something
which can hold data of different types together.
In structure, data is stored in form of records.

Defining a structure
struct keyword is used to define a structure. struct defines a new data type which is
a collection of primary and derived datatypes.

Syntax:

struct [structure_tag]

{
//member variable 1
//member variable 2
//member variable 3

}Hstructure_variables];

As you can see in the syntax above, we start with the struct keyword, then it's
optional to provide your structure a name, we suggest you to give it a name, then inside the
curly braces, we have to mention all the member variables, which are nothing but normal C
language variables of different types like int, float, array etc.

After the closing curly brace, we can specify one or more structure variables, again
this is optional.

Note: The closing curly brace in the structure type declaration must be followed by a
semicolon(;).

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year II Semester

Example of Structure
struct Student
{
char name[25];
int age;
char branch[10];
// F for female and M for male
char gender;
b
Here struct Student declares a structure to hold the details of a student which
consists of 4 data fields, namely name, age, branch and gender. These fields are
called structure elements or members.
Each member can have different datatype, like in this case, nameis an array
of char type and age is of int type etc. Student is the name of the structure and is called as
the structure tag.

Declaring Structure Variables

It is possible to declare variables of astructure, either along with structure
definition or after the structure is defined. Structure variable declaration is similar to the
declaration of any normal variable of any other datatype. Structure variables can be
declared in following two ways:

1) Declaring Structure variables separately
struct Student
{

char name|[25];

int age;

char branch[10];

//F for female and M for male

char gender;

b
struct Student S1,S2; //declaring variables of struct Student

2) Declaring Structure variables with structure definition
struct Student
{

char name[25];

int age;

char branch[10];

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year II Semester

//F for female and M for male
char gender;
}S1, S2;
Here S1 and S2 are variables of structure Student. However this approach is not
much recommended.

Accessing Structure Members

Structure members can be accessed and assigned values in a number of ways.
Structure members have no meaning individually without the structure. In order to assign
a value to any structure member, the member name must be linked with
the structure variable wusing a dot. operator also called period or member
access operator.
For example:
#include<stdio.h>
#include<string.h>

struct Student

{

char name|[25];

int age;

char branch[10];

//F for female and M for male
char gender;

b

int main()

{

struct Student s1;

/*
s1 is a variable of Student type and
age is a member of Student
*/
sl.age =18;
/*
using string function to add name
*/
strcpy(sl.name, "Viraaj");
/*

displaying the stored values

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year II Semester

*/
printf("Name of Student 1: %s\n", sl.name);
printf("Age of Student 1: %d\n", s1.age);

return 0;

Name of Student 1: Viraaj

Age of Student 1: 18

We can also use scanf() to give values to structure members through terminal.
scanf(" %s ", sl.name);

scanf(" %d ", &s1.age);

Structure Initialization
Like a variable of any other datatype, structure variable can also be initialized at

compile time.
struct Patient
{

float height;

int weight;

int age;

b

struct Patient p1 ={180.75, 73,23 }; //initialization

or,

struct Patient p1;

pl.height = 180.75; //initialization of each member separately
pl.weight = 73;

pl.age = 23;

Array of Structure

We can also declare an array of structure variables. in which each element of the
array will represent a structure variable. Example : struct employee emp[5];

The below program defines an array emp of size 5. Each element of the array emp is
of type Employee.

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year II Semester

#include<stdio.h>

struct Employee

{
char ename[10];
int sal;

b

struct Employee emp|[5];
inti, j;
void ask()
{
for(i=0;i<3;i++)
{
printf("\nEnter %dst Employee record:\n", i+1);
printf("\nEmployee name:\t");
scanf("%s", emp[i].ename);
printf("\nEnter Salary:\t");
scanf("%d", &emp[i].sal);
}
printf("\nDisplaying Employee record:\n");
for(i=0;i<3;i++)
{
printf("\nEmployee name is %s", emp|[i].ename);
printf("\nSlary is %d", emp[i].sal);
}
}

void main()

{
ask();

}

Nested Structures
Nesting of structures, is also permitted in C language. Nested structures means, that

one structure has another stucture as member variable.
Example:
struct Student
{

char[30] name;

int age;

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year II Semester

/* here Address is a structure */
struct Address
{
char[50] locality;
char[50] city;
int pincode;
taddr;
b

Structure as Function Arguments
We can pass a structure as a function argument just like we pass any other variable
or an array as a function argument.
Example:
#include<stdio.h>

struct Student

{
char name[10];
int roll;

Iy
void show(struct Student st);

void main()

{
struct Student std;
printf("\nEnter Student record:\n");
printf("\nStudent name:\t");
scanf("%s", std.name);
printf("\nEnter Student rollno.:\t");
scanf("%d", &std.roll);
show(std);

void show(struct Student st)

{

printf("\nstudent name is %s", st.name);
printf("\nroll is %d", st.roll);

}

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year II Semester

C Unions:
A union is a user-defined type similar to structs in C programming.

How to define a union?
We use the union keyword to define unions. Here's an example:

union car

{

char name[50];
int price;

I

The above code defines a derived type union car.

Create union variables

When a union is defined, it creates a user-defined type. However, no memory is
allocated. To allocate memory for a given union type and work with it, we need to create
variables.
Here's how we create union variables.

union car

{

char name[50];
int price;

i

int main()

{

union car carl, car2, *car3;
return 0;

}

Another way of creating union variables is:

union car

{

char name[50];

int price;
} carl, car2, *car3;
In both cases, union variables carl, car2, and a union pointer car3 of union cartype are
created.

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year II Semester

Access members of a union
We use the . operator to access members of a union. To access pointer variables, we
use also use the -> operator.
In the above example,
To access price for carl, carl.price is used.

To access price using car3, either (*car3).price or car3->price can be used.

Advantages & Disadvantages of Unions:
Advantages of union
Here, are pros/benefits for using union:
e Itoccupiesless memory compared to structure.
e When you use union, only the last variable can be directly accessed.
e Union is used when you have to use the same memory location for two or more data
members.
e Itenables you to hold data of only one data member.
e Its allocated space is equal to maximum size of the data member.
Disadvantages of union
Here, are cons/drawbacks for using union:
e You can use only one union member at a time.
e All the union variables cannot be initialized or used with varying values at a time.
e Union assigns one common storage space for all its members.

Difference between unions and structures

STRUCTURE UNION
Keyword The keyword structis usedio define a structure The keyword union is usedto define a union,

Size ‘When avariable is associated with a structure, the when avanable is associated with a union, the compiler
compiler allocates the memary for each member The allocates the memory by considedngthe size of the
size of structure is greater than or equal to the sum of largest memory. So, size of union is equal to the size
sizes ofits members. of largest member.

Memory Each member within a structure is assigned unique Memaory allocated is shared by individual members of
storage area of location. union.
Value Alteringthe value of 3 member will not affed other Altering the value of any of the member will alter other
Altering members of the structure. membervalues
Accessing | - ii.o1 mamber can be accessed atatime. Drily one member can be accessed ala time.
members
‘I}r;r::!ltrlt]aht;or;'- Severalmembers of a structure can initialize atonce. Only thefirstmember of 3unlon can be inltialized.

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year II Semester

Why this difference in the size of union and structure variables?
Here, the size of sjob is 40 bytes because

e the size of name[32] is 32 bytes

o the size of salary is 4 bytes

o the size of workerNo is 4 bytes

However, the size of ujob is 32 bytes. It's because the size of a union variable will
always be the size of its largest element. In the above example, the size of its largest
element, (name[32]), is 32 bytes.

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year II Semester

Object Oriented Programming:
Introduction:

C++ is an extension of the C programming language, which means that all of the C
library functions can be used in a C++ application. C++ was finally standardized in June
1998, but its history can be traced back almost 20 years. This document will begin with
how C++ has evolved over the years and introduce some of the language's features. Since
C++ is an object-oriented programming language, it is important to understand the
concepts of object-oriented programming. The remainder of this document will discuss
object-oriented programming, C++ classes and how they are implemented, introduce some
new keywords, and mention some basic [/0 differences between C and C++.

Evolution of C++

C++ was originally known as “C with Classes.” Bjarne Stroustrup from AT&T
Laboratories developed the language in 1980. Bjarne needed to add speed to simulations
that were written in Simula-67. Since C was the fastest procedural language, he decided to
add classes, function argument type checking and conversion, and other features to it.
Around the 1983/1984 time frame, virtual functions and operator overloading were added
to the language, and it was decided that “C with Classes” be renamed to C++. The language
became available to the public in 1985 after a few refinements were made. Templates and
exception handling were added to C++ in 1989. The Standard Template Library (STL) was
developed by Hewlett-Packard in 1994, and was ultimately added to the draft C++
standard. The final draft was accepted by the X3J16 subcommittee in November 1997, and
received final approval from the International Standards Organization (ISO) in June 1998
to officially declare C++ a standard.

Programming Paradigms
There are two programming paradigms:

e Procedure-Oriented
e Object-Oriented

Examples of procedure-oriented languages include: C, Pascal, FORTRAN
Examples of object-oriented languages include: C++, SmallTalk, Eiffel.
A side-by-side comparison of the two programming paradigms clearly shows how

object-oriented programming is vastly different from the more conventional means of
programming:

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year II Semester

Procedure-Oriented Programming Object-Oriented Programming

e Top Down/Bottom Up Design e Identify objects to be modeled

e Structured programming e Concentrate on what an object does

e (entered around an algorithm e Hide how an object performs its tasks

e Identify tasks; how something is | ¢ Identify an object’s behavior and
done attributes

Structure of C++:

When we consider a C++ program, it can be defined as a collection of objects that
communicate via invoking each other's methods. Let us now briefly look into what a class,
object, methods, and instant variables mean.

e Object - Objects have states and behaviors. Example: A dog has states - color, name,
breed as well as behaviors - wagging, barking, eating. An object is an instance of a
class.

e Class- A class can be defined as a template/blueprint that describes the
behaviors/states that object of its type support.

e Methods - A method is basically a behavior. A class can contain many methods. It is
in methods where the logics are written, data is manipulated and all the actions are
executed.

o Instance Variables - Each object has its unique set of instance variables. An
object's state is created by the values assigned to these instance variables.

C++ Program Structure
Let us look at a simple code that would print the words Hello World.

#include <iostream>
using namespace std;

// main() is where program execution begins.
int main() {
cout << "Hello World"; // prints Hello World
return 0;

}

Let us look at the various parts of the above program -
e The C++ language defines several headers, which contain information that is either
necessary or useful to your program. For this program, the header <iostream> is
needed.

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year II Semester

e The line using namespace std; tells the compiler to use the std namespace.
Namespaces are a relatively recent addition to C++.

e The next line '// main() is where program execution begins.' is a single-line
comment available in C++. Single-line comments begin with // and stop at the end
of the line.

e The line int main() is the main function where program execution begins.

e The next line cout << "Hello World"; causes the message "Hello World" to be
displayed on the screen.

e The next line return 0; terminates main()function and causes it to return the value
0 to the calling process.

Semicolons and Blocks in C++
In C++, the semicolon is a statement terminator. That is, each individual statement
must be ended with a semicolon. It indicates the end of one logical entity.

For example, following are three different statements -
X=Yy;
y=y+1;
add(x, y);
A block is a set of logically connected statements that are surrounded by opening
and closing braces. For example -
{
cout << "Hello World"; // prints Hello World
return 0;
}
C++ does not recognize the end of the line as a terminator. For this reason, it does
not matter where you put a statement in a line. For example -
X=Y;
y=y+1
add(x,y);
is the same as
x=y;y=y+1;add(x,y);

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year II Semester

A SIMPLE PROGRAM:

C++ "Hello World!" Program
// Your First C++ Program

#include <iostream>

int main() {
std::cout << "Hello World!";
return 0;

}
Output

Hello World!

STORAGE CLASSES IN C++

A storage class defines the scope (visibility) and life-time of variables and/or functions
within a C++ Program. These specifiers precede the type that they modify. There are
following storage classes, which can be used in a C++ Program

e auto

e register
e static

e extern

e« mutable

The auto Storage Class
The auto storage class is the default storage class for all local variables.
{
int mount;
auto int month;
}
The example above defines two variables with the same storage class, auto can only be
used within functions, i.e., local variables.

The register Storage Class

The register storage class is used to define local variables that should be stored in a
register instead of RAM. This means that the variable has a maximum size equal to the
register size (usually one word) and can't have the unary '&' operator applied to it (as it
does not have a memory location).

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year II Semester

{

register int miles;
}

The register should only be used for variables that require quick access such as
counters. It should also be noted that defining 'register' does not mean that the variable
will be stored in a register. It means that it MIGHT be stored in a register depending on
hardware and implementation restrictions.

The static Storage Class

The static storage class instructs the compiler to keep a local variable in existence
during the life-time of the program instead of creating and destroying it each time it comes
into and goes out of scope. Therefore, making local variables static allows them to
maintain their values between function calls.

The static modifier may also be applied to global variables. When this is done, it
causes that variable's scope to be restricted to the file in which it is declared.

In C++, when static is used on a class data member, it causes only one copy of that
member to be shared by all objects of its class.

#include <iostream>

// Function declaration
void func(void);

static int count = 10; /* Global variable */

main() {
while(count--) {
func();

}

return 0;

}

// Function definition
void func(void) {
staticinti=>5; // local static variable
i++;
std::cout << "iis " <<1i;
std::cout << " and count is " << count << std::endl;

}

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year II Semester

When the above code is compiled and executed, it produces the following result -
iis 6 and countis 9
iis 7 and countis 8
iis 8 and countis 7
iis 9 and countis 6
iis 10 and countis 5
iis 11 and count is 4
iis 12 and countis 3
iis 13 and countis 2
iis 14 and countis 1
iis 15 and countis 0

The extern Storage Class

The extern storage class is used to give a reference of a global variable that is
visible to ALL the program files. When you use 'extern' the variable cannot be initialized as
all it does is point the variable name at a storage location that has been previously defined.

When you have multiple files and you define a global variable or function, which
will be used in other files also, then extern will be used in another file to give reference of
defined variable or function. Just for understanding extern is used to declare a global
variable or function in another file.

The extern modifier is most commonly used when there are two or more files
sharing the same global variables or functions as explained below.

First File: main.cpp

#include <iostream>
int count;
extern void write_extern();

main() {
count = 5;
write_extern();

}

Second File: support.cpp
#include <iostream>

extern int count;

void write_extern(void) {
std::cout << "Count is " << count << std::endl;

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year II Semester

}

Here, extern keyword is being used to declare count in another file. Now compile these
two files as follows -

$g++ main.cpp support.cpp -o write

This will produce write executable program, try to execute write and check the result as
follows -

$./write

5

The mutable Storage Class

The mutable specifier applies only to class objects, which are discussed later in this
tutorial. It allows a member of an object to override const member function. That is, a
mutable member can be modified by a const member function.

Difference between C and C++
Similarities between C and C++ are:
o Both the languages have a similar syntax.
o Code structure of both the languages are same.
e The compilation of both the languages is similar.
e They share the same basic syntax. Nearly all of C’s operators and keywords are also
present in C++ and do the same thing.
e C++ has a slightly extended grammar than C, but the basic grammer is the same.
e Basic memory model of both is very close to the hardware.
e Same notions of stack, heap, file-scope and static variables are present in both the
languages.

Differences between C and C++ are:
C++ can be said a superset of C. Major added features in C++ are Object-Oriented

Programming, Exception Handling and rich C++ Library.

Below is the table of differences between C and C++:

C was developed by Dennis Ritchie
between the year 1969 and 1973 at AT&T C++ was developed by Bjarne Stroustrup
Bell Labs. in 1979.

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++

B.Com. I Year Il Semester

C does no support polymorphism,
encapsulation, and inheritance which
means that C does not support object
oriented programming.

C++

supports polymorphism, encapsulation,
and inheritance because it is an object
oriented programming language.

Cis a subset of C++.

C++is a superset of C.

C contains 32 keywords.

C++ contains 52 keywords.

For the development of code, C
supports procedural programming.

C++ is known as hybrid language because
C++ supports both procedural and object
oriented programming paradigms.

Data and functions are separated in C
because it is a procedural programming
language.

Data and functions are encapsulated
together in form of an object in C++.

C does not support information hiding.

Data is hidden by the Encapsulation to
ensure that data structures and operators
are used as intended.

Built-in data types is supported in C.

Built-in & user-defined data types is
supported in C++.

Cis a function driven language because C
is a procedural programming language.

C++ is an object driven language because
it is an object oriented programming.

Function and operator overloading is not
supported in C.

Function and operator overloading is
supported by C++.

Cis a function-driven language.

C++ is an object-driven language

Functions in C are not defined inside
structures.

Functions can be used inside a structure
in C++.

Namespace features are not present
inside the C.

Namespace is used by C++, which avoid
name collisions.

Header file used by C is stdio.h.

Header file used by C++ is iostream.h.

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++

B.Com. I Year Il Semester

Reference variables are not supported by
C.

Reference variables are supported by
C++.

Virtual and friend functions are not
supported by C.

Virtual and friend functions are
supported by C++.

C does not support inheritance.

C++ supports inheritance.

Instead of focusing on data, C focuses on
method or process.

C++ focuses on data instead of focusing
on method or procedure.

C provides malloc() and calloc() functions
for dynamic memory allocation,
and free()for memory de-allocation.

C++ provides new operator for memory
allocation and delete operator for
memory de-allocation.

Direct support for exception handling is
not supported by C.

Exception handling is supported by C++.

scanf() and printf() functions are used for
input/outputin C.

cin and cout are used for input/output in
C++.

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year II Semester

Unit - V: Classes and Objects
Data Members-Member Functions - Object Oriented Concepts-Class-Object- Encapsulation-
Abstraction - Polymorphism (Function Overloading and Operator Overloading) Inheritance
(Inheritance Forms & Types)

DATA MEMBERS AND MEMBER FUNCTIONS IN C++ PROGRAMMING

"Data Member" and "Member Functions" are the new names/terms for the members
of a class, which are introduced in C++ programming language.

The variables which are declared in any class by using any fundamental data
types (like int, char, float etc) or derived data type (like class, structure, pointer etc.) are
known as Data Members. And the functions which are declared either in private section of
public section are known as Member functions.

There are two types of data members/member functions in C++:
1. Private members
2. Public members

1) Private members

The members which are declared in private section of the class (using private access
modifier) are known as private members. Private members can also be accessible within the
same class in which they are declared.
2) Public members

The members which are declared in public section of the class (using public access
modifier) are known as public members. Public members can access within the class and
outside of the class by using the object name of the class in which they are declared.
Consider the example:

class Test
{
private:
int a;
float b;
char *name;
void getA() { a=10; }
public:
int count;
void getB() { b=20; }
I3

Here, a, b, and name are the private data members and count is a public data member.
While, getA() is a private member function and getB() is public member functions.

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year II Semester

C++ program that will demonstrate, how to declare, define and access data members an
member functions in a class?

#include <iostream>
#include <string.h>
using namespace std;

#define MAX CHAR 30

//class definition
class person

{
//private data members
private:
char name [MAX_CHAR];
int age;
//public member functions
public:
//function to get name and age
void get(char n[], inta)
{
strcpy(name, n);
age = a;
}
//function to print name and age
void put()
{
cout<< "Name: " << name <<endl;
cout<< "Age: " <<age <<end];
}
5
//main function
int main()
{

//creating an object of person class
person PER;

//calling member functions
PER.get("Manju Tomar", 23);
PER.put();

return 0;

}

Output
Name: Manju Tomar
Age: 23

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year II Semester

As we can see in the program, that private members are directly accessible within the
member functions and member functions are accessible within in main() function (outside of
the class) by using period (dot) operator like object_name.member_name;

OBJECT ORIENTED CONCEPTS:

An abstract data type (ADT) is a user-defined data type where objects of that data
type are used through provided functions without knowing the internal representation. For
example, an ADT is analogous to, say an automobile transmission. The car’s driver knows
how to operate the transmission, but does not know how the transmission works internally.

The interface is a set of functions within the ADT that allow access to data.

The implementation of an ADT is the underlying data structure(s) used to store data.
It is important to understand the distinction between a class and an object. The two terms
are often used interchangeably, however there are noteworthy differences. Classes will be
formally introduced later in this document, but is mentioned here due to the frequent use of
the nomenclature in describing OOP.

Classes & Objects

An object is a basic unit in object-oriented programing. An object contains data and
methods or functions that operate on that data. Objects take up space in memory.

A class, on the other hand, is a blueprint of the object. Conversely, an object can be defined as
an instance of a class. A class contains a skeleton of the object and does not take any space in
the memory.

Let us take an Example of a car object. A car object named “Maruti” can have data such
as color; make, model, speed limit, etc. and functions like accelerate. We define another object
“ford”. This can have similar data and functions like that of the previous object plus some
more additions.

Similarly, we can have numerous objects of different names having similar data and
functions and some minor variations.

Thus instead of defining these similar data and functions in these different objects, we
define a blueprint of these objects which is a class called Car. Each of the objects above will be
instances of this class car.

The differences are summarized below:

Class Object

e Defines a model e Aninstance of a class

e Declares attributes e Has state

e Declares behavior e Has behavior

e AnADT e There can be many unique objects of the same class

Mr. Phanindra Kumar Katakam, Univ. Arts & Science College, Kakatiya University, Wgl.

Programming with C & C++ B.Com. I Year II Semester

There are four main attributes to object-oriented programming:
e Data Encapsulation

e Data Abstraction

e Inheritance

e Polymorphism

Encapsulation: In normal terms, Encapsulation is defined as wrapping up of data and
information under a single unit. In Object-Oriented Programming, Encapsulation is defined as

binding together the data and the functions that manipulate them.

Consider a real-life example of encapsulation, in a company, there are different sections like
the accounts section, finance section, sales section etc. The finance section handles all the
financial transactions and keeps records of all the data related to finance. Similarly, the sales
section handles all the sales-related activities and keeps records of all the sales. Now there
may arise a situation when for some reason an official from the finance section needs all the
data about sales in a particular month. In this case, he is not allowed to directly access the
data of the sales section. He will first have to contact some other officer in the sales section
and then request him to give the particular data. This is what encapsulation is. Here the data
of the sales section and the employees that can manipulate them are wrapped under a single
name “sales section”.

Encapsulation in C++

w Variables

Class

Encapsufation in C++

Encapsulation also leads to data abstraction or hiding. As using encapsulation also hides the
data. In the above example, the data of any of the section like sales, finance or accounts are
hidden from any other section.
Abstraction: Data abstraction is one of the most essential and important features of object-
oriented programming in C++. Abstraction means displaying only essential information and
hiding the details. Data abstraction refers to providing only essential information about the
data to the outside world, hiding the background details or implementation.
Consider a real-life example of a man driving a car. The man only knows that pressing the
accelerators will increase the speed of the car or applying brakes will stop the car but he does
not know about how on pressing accelerator the speed is actually increasing, he does not
know about the inner mechanism of the car or the implementation of accelerator, brakes etc
in the car. This is what abstraction is.

o Abstraction using Classes: We can implement Abstraction in C++ using classes. The

class helps us to group data members and member functions using available access

Programming with C & C++ B.Com. I Year II Semester

specifiers. A Class can decide which data member will be visible to the outside world
and which is not.

o Abstraction in Header files: One more type of abstraction in C++ can be header files. For
example, consider the pow() method present in math.h header file. Whenever we need
to calculate the power of a number, we simply call the function pow() present in the
math.h header file and pass the numbers as arguments without knowing the
underlying algorithm according to which the function is actually calculating the power
of numbers.

Inheritance: The capability of a class to derive properties and characteristics from another
class is called Inheritance. Inheritance is one of the most important features of Object-
Oriented Programming.

o Sub Class: The class that inherits properties from another class is called Sub class or
Derived Class.

o Super Class:The class whose properties are inherited by sub class is called Base Class
or Super class.

o Reusability: Inheritance supports the concept of “reusability”, i.e. when we want to
create a new class and there is already a class that includes some of the code that we
want, we can derive our new class from the existing class. By doing this, we are
reusing the fields and methods of the existing class.

Example: Dog, Cat, Cow can be Derived Class of Animal Base Class.

ANIMAL CLASS
DOG CAT cow
CLASS CLASS CLASS

d W

A

|
Dynamic Binding: In dynamic binding, the code to be executed in response to function call is
decided at runtime. C++ has virtual functions to support this.
Message Passing: Objects communicate with one another by sending and receiving
information to each other. A message for an object is a request for execution of a procedure
and therefore will invoke a function in the receiving object that generates the desired results.

Message passing involves specifying the name of the object, the name of the function and the
information to be sent.

Programming with C & C++ B.Com. I Year II Semester

Polymorphism: The word polymorphism means having many forms. In simple words, we can
define polymorphism as the ability of a message to be displayed in more than one form.
A person at the same time can have different characteristic. Like a man at the same time is a
father, a husband, an employee. So the same person posses different behaviour in different
situations. This is called polymorphism.
An operation may exhibit different behaviours in different instances. The behaviour depends
upon the types of data used in the operation.
C++ supports operator overloading and function overloading.
o Operator Overloading: The process of making an operator to exhibit different
behaviours in different instances is known as operator overloading.
e Function Overloading: Function overloading is using a single function name to perform
different types of tasks.
Polymorphism is extensively used in implementing inheritance.
Example: Suppose we have to write a function to add some integers, some times there are 2
integers, some times there are 3 integers. We can write the Addition Method with the same
name having different parameters, the concerned method will be called according to
parameters.

int main()

{
sum1 = sum(20,30);
sum2 = sum(20,30,40);

} \

int sum(int a,int b) int sum(int a,int b,int c)

return (a+b); return (a+b+c);

} }

